A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data

gdc.relation.journal Applıed Scıences-Basel en_US
dc.contributor.author Karadayı, Yıldız
dc.contributor.author Aydın, Mehmet Nafiz
dc.contributor.author Öğrenci, Arif Selçuk
dc.date.accessioned 2020-12-01T14:17:33Z
dc.date.available 2020-12-01T14:17:33Z
dc.date.issued 2020
dc.description.abstract Multivariate time-series data with a contextual spatial attribute have extensive use for finding anomalous patterns in a wide variety of application domains such as earth science, hurricane tracking, fraud, and disease outbreak detection. In most settings, spatial context is often expressed in terms of ZIP code or region coordinates such as latitude and longitude. However, traditional anomaly detection techniques cannot handle more than one contextual attribute in a unified way. In this paper, a new hybrid approach based on deep learning is proposed to solve the anomaly detection problem in multivariate spatio-temporal dataset. It works under the assumption that no prior knowledge about the dataset and anomalies are available. The architecture of the proposed hybrid framework is based on an autoencoder scheme, and it is more efficient in extracting features from the spatio-temporal multivariate datasets compared to the traditional spatio-temporal anomaly detection techniques. We conducted extensive experiments using buoy data of 2005 from National Data Buoy Center and Hurricane Katrina as ground truth. Experiments demonstrate that the proposed model achieves more than 10% improvement in accuracy over the methods used in the comparison where our model jointly processes the spatial and temporal dimensions of the contextual data to extract features for anomaly detection. en_US
dc.identifier.citationcount 16
dc.identifier.doi 10.3390/app10155191 en_US
dc.identifier.issn 2076-3417 en_US
dc.identifier.issn 2076-3417
dc.identifier.scopus 2-s2.0-85088858134 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3498
dc.identifier.uri https://doi.org/10.3390/app10155191
dc.language.iso en en_US
dc.publisher Mdpi en_US
dc.relation.ispartof Applied Sciences
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Spatio-temporal anomaly detection en_US
dc.subject Unsupervised learning en_US
dc.subject Multivariate data en_US
dc.subject Deep learning en_US
dc.subject CNN en_US
dc.subject LSTM en_US
dc.subject Hurricane tracking en_US
dc.subject Hurricane Katrina en_US
dc.title A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Aydın, Mehmet Nafiz en_US
gdc.author.institutional Aydın, Mehmet Nafiz
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.issue 15 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 5191
gdc.description.volume 10 en_US
gdc.identifier.openalex W3045723486
gdc.identifier.wos WOS:000568130900001 en_US
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 19.0
gdc.oaire.influence 4.6928688E-9
gdc.oaire.isgreen true
gdc.oaire.keywords spatio-temporal anomaly detection
gdc.oaire.keywords Technology
gdc.oaire.keywords QH301-705.5
gdc.oaire.keywords T
gdc.oaire.keywords Physics
gdc.oaire.keywords QC1-999
gdc.oaire.keywords Hurricane tracking
gdc.oaire.keywords Hurricane Katrina
gdc.oaire.keywords deep learning
gdc.oaire.keywords Deep learning
gdc.oaire.keywords hurricane tracking
gdc.oaire.keywords unsupervised learning
gdc.oaire.keywords Engineering (General). Civil engineering (General)
gdc.oaire.keywords Unsupervised learning
gdc.oaire.keywords multivariate data
gdc.oaire.keywords Chemistry
gdc.oaire.keywords Multivariate data
gdc.oaire.keywords Spatio-temporal anomaly detection
gdc.oaire.keywords TA1-2040
gdc.oaire.keywords Biology (General)
gdc.oaire.keywords LSTM
gdc.oaire.keywords QD1-999
gdc.oaire.keywords CNN
gdc.oaire.popularity 2.5594833E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 2.479
gdc.openalex.normalizedpercentile 0.88
gdc.opencitations.count 24
gdc.plumx.crossrefcites 30
gdc.plumx.mendeley 48
gdc.plumx.scopuscites 34
gdc.scopus.citedcount 34
gdc.wos.citedcount 22
relation.isAuthorOfPublication a66a9279-fa0c-4915-816f-40c93cee4747
relation.isAuthorOfPublication.latestForDiscovery a66a9279-fa0c-4915-816f-40c93cee4747
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
A Hybrid Deep Learning Framework for Unsupervised Anomaly Detection in Multivariate Spatio-Temporal Data.pdf
Size:
4.49 MB
Format:
Adobe Portable Document Format
Description: