Measurement-Based Control for Minimizing Energy Functions in Quantum Systems
dc.authorid | Abdul Rahman, Salahuddin/0009-0002-9686-8586 | |
dc.authorscopusid | 57219795805 | |
dc.authorscopusid | 57217571854 | |
dc.authorscopusid | 24824407000 | |
dc.authorscopusid | 23394098500 | |
dc.contributor.author | Karabacak, Özkan | |
dc.contributor.author | Rahman, Salahuddin Abdul | |
dc.contributor.author | Karabacak, Ozkan | |
dc.contributor.author | Wisniewski, Rafal | |
dc.date.accessioned | 2024-06-23T21:37:15Z | |
dc.date.available | 2024-06-23T21:37:15Z | |
dc.date.issued | 2023 | |
dc.department | Kadir Has University | en_US |
dc.department-temp | [Clausen, Henrik Glavind; Rahman, Salahuddin Abdul; Wisniewski, Rafal] Aalborg Univ, Sect Automat & Control, Dept Elect Syst, Aalborg, Denmark; [Karabacak, Ozkan] Kadir Has Univ, Dept Mechatron Engn, Istanbul, Turkiye | en_US |
dc.description | Abdul Rahman, Salahuddin/0009-0002-9686-8586 | en_US |
dc.description.abstract | In variational quantum algorithms (VQAs), the most common objective is to find the minimum energy eigenstate of a given energy Hamiltonian. In this paper, we consider the general problem of finding a sufficient control Hamiltonian structure that, under a given feedback control law, ensures convergence to the minimum energy eigenstate of a given energy function. By including quantum non-demolition (QND) measurements in the loop, convergence to a pure state can be ensured from an arbitrary mixed initial state. Based on existing results on strict control Lyapunov functions, we formulate a semidefinite optimization problem, whose solution defines a non-unique control Hamiltonian, which is sufficient to ensure almost sure convergence to the minimum energy eigenstate under the given feedback law and the action of QND measurements. A numerical example is provided to showcase the proposed methodology. Copyright (c) 2023 The Authors. This is an open access article under the CC BY-NC-ND license (https://creativecommons.org/licenses/by-nc-nd/4.0/) | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.ifacol.2023.10.111 | |
dc.identifier.endpage | 5178 | en_US |
dc.identifier.issn | 2405-8963 | |
dc.identifier.issue | 2 | en_US |
dc.identifier.scopus | 2-s2.0-85174482248 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.startpage | 5171 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.ifacol.2023.10.111 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5707 | |
dc.identifier.volume | 56 | en_US |
dc.identifier.wos | WOS:001196709200333 | |
dc.identifier.wosquality | N/A | |
dc.language.iso | en | en_US |
dc.publisher | Elsevier | en_US |
dc.relation.ispartof | 22nd World Congress of the International Federation of Automatic Control (IFAC) -- JUL 09-14, 2023 -- Yokohama, JAPAN | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Lyapunov control | en_US |
dc.subject | quantum non-demolition measurements | en_US |
dc.subject | semidefinite programming | en_US |
dc.subject | variational quantum algorithms | en_US |
dc.title | Measurement-Based Control for Minimizing Energy Functions in Quantum Systems | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | a7f221bd-0e6f-4846-a7cc-18833a9ab0f8 | |
relation.isAuthorOfPublication.latestForDiscovery | a7f221bd-0e6f-4846-a7cc-18833a9ab0f8 |