Applications of Ml/Dl in the Management of Smart Cities and Societies Based on New Trends in Information Technologies: a Systematic Literature Review

dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Unal, Mehmet
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:11:40Z
dc.date.available 2023-10-19T15:11:40Z
dc.date.issued 2022
dc.description.abstract The goal of managing smart cities and societies is to maximize the efficient use of finite resources while enhancing the quality of life. To establish a sustainable urban existence, smart cities use some new technologies such as the Internet of Things (IoT), Internet of Drones (IoD), and Internet of Vehicles (IoV). The created data by these technologies are submitted to analytics to obtain new information for increasing the smart societies and cities' efficiency and effectiveness. Also, smart traffic management, smart power, and energy management, city surveillance, smart buildings, and patient healthcare monitoring are the most common applications in smart cities. However, the Artificial intelligence (AI), Machine Learning (ML), and Deep Learning (DL) approach all hold a lot of promise for managing automated activities in smart cities. Therefore, we discuss different research issues and possible research paths in which the aforementioned techniques might help materialize the smart city notion. The goal of this research is to offer a better understanding of (1) the fundamentals of smart city and society management, (2) the most recent developments and breakthroughs in this field, (3) the benefits and drawbacks of existing methods, and (4) areas that require further investigation and consideration. IoT, cloud computing, edge computing, fog computing, IoD, IoV, and hybrid models are the seven key emerging de-velopments in information technology that, in this paper, are considered to categorize the state-of-the-art techniques. The results indicate that the Conventional Neural Network (CNN) and Long Short-Term Memory (LSTM) are the most commonly used ML method in the publications. According to research, the majority of papers are about smart cities' power and energy management. Furthermore, most papers have concentrated on improving only one parameter, where the accuracy parameter obtains the most attention. In addition, Python is the most frequently used language, which was used in 69.8% of the papers. en_US
dc.identifier.citationcount 80
dc.identifier.doi 10.1016/j.scs.2022.104089 en_US
dc.identifier.issn 2210-6707
dc.identifier.issn 2210-6715
dc.identifier.scopus 2-s2.0-85135362056 en_US
dc.identifier.uri https://doi.org/10.1016/j.scs.2022.104089
dc.identifier.uri https://hdl.handle.net/20.500.12469/5162
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Sustainable Cities and Society en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Energy Management En_Us
dc.subject City En_Us
dc.subject Security En_Us
dc.subject Internet En_Us
dc.subject Optimization En_Us
dc.subject Generation En_Us
dc.subject Network En_Us
dc.subject Design En_Us
dc.subject Things En_Us
dc.subject Model En_Us
dc.subject Energy Management
dc.subject City
dc.subject Security
dc.subject Internet
dc.subject Smart cities en_US
dc.subject Optimization
dc.subject Sustainable city en_US
dc.subject Generation
dc.subject Power management en_US
dc.subject Network
dc.subject Machine learning en_US
dc.subject Design
dc.subject City management en_US
dc.subject Things
dc.subject Deep learning en_US
dc.subject Model
dc.subject Review en_US
dc.title Applications of Ml/Dl in the Management of Smart Cities and Societies Based on New Trends in Information Technologies: a Systematic Literature Review en_US
dc.type Review en_US
dspace.entity.type Publication
gdc.author.id Jafari Navimipour, Nima/0000-0002-5514-5536
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.institutional Jafari Navimipour, Nima
gdc.author.wosid Jafari Navimipour, Nima/AAF-5662-2021
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.bip.impulseclass C2
gdc.bip.influenceclass C4
gdc.bip.popularityclass C3
gdc.coar.access metadata only access
gdc.coar.type text::review
gdc.description.departmenttemp [Heidari, Arash] Islamic Azad Univ, Dept Comp Engn, Tabriz Branch, Tabriz, Iran; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkey; [Unal, Mehmet] Nisantasi Univ, Dept Comp Engn, Istanbul, Turkey; [Heidari, Arash] Islamic Azad Univ, Dept Comp Engn, Shabestar Branch, Shabestar, Iran en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.scopusquality Q1
gdc.description.startpage 104089
gdc.description.volume 85 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W4286776267
gdc.identifier.wos WOS:000838158100002 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 185.0
gdc.oaire.influence 1.1710349E-8
gdc.oaire.isgreen false
gdc.oaire.popularity 1.3003958E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 17.306
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 144
gdc.plumx.crossrefcites 33
gdc.plumx.mendeley 410
gdc.plumx.scopuscites 205
gdc.scopus.citedcount 207
gdc.wos.citedcount 143
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5162.pdf
Size:
4.12 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text