Securereg: Combining Nlp and Mlp for Enhanced Detection of Malicious Domain Name Registrations

dc.authorscopusid58705861300
dc.authorscopusid57964038500
dc.authorscopusid6507328166
dc.authorscopusid6602924425
dc.contributor.advisor0
dc.contributor.authorEcevit, Mert İlhan
dc.contributor.authorDağ, Hasan
dc.contributor.authorDag,H.
dc.contributor.authorCreutzburg,R.
dc.date.accessioned2024-11-15T17:49:06Z
dc.date.available2024-11-15T17:49:06Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempColhak F., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey; Ecevit M.I., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey; Dag H., Kadir Has University, CCIP, Center for Cyber Security and Critical Infrastructure Protection, Istanbul, Turkey; Creutzburg R., SRH Berlin University of Applied Technology, Berlin School of Technology, Berlin, Germany, Technische Hochschule Brandenburg, Fachbereich Informatik und Medien, Brandenburg, Germanyen_US
dc.descriptionAksaray University, IEEEen_US
dc.description.abstractThe escalating landscape of cyber threats, charac-terized by the registration of thousands of new domains daily for lar ge-scale Inter net attacks such as spam, phishing, and drive-by downloads, underscor es the imperati ve for innovative detection methodologies. This paper introduces a cutting-edge approach for identifying suspicious domains at the onset of the registration process. The accompanying data pipeline generates crucial featur es by comparing new domains to register ed do-mains, emphasizing the crucial similarity score. The proposed system analyzes semantic and numerical attrib utes by leveraging a novel combination of Natural Language Processing (NLP) techniques, including a pretrained CANINE model and Multilayer Perceptr on (MLP) models, providing a robust solution for early threat detection. This integrated Pretrained NLP (CANINE) + MLP model showcases the outstanding perf ormance, surpassing both individual pretrained NLP models and standalone MLP models. With an PI score of 84.86% and an accuracy of 84.95%on the SecureReg dataset, it effecti vely detects malicious domain registrations. The finding demonstrate the effecti veness of the integrated appr oach and contrib ute to the ongoing efforts to develop proactive strategies to mitigate the risks associated with illicit online activities through the ear ly identificatio of suspicious domain registrations. © 2024 IEEE.en_US
dc.identifier.doi10.1109/ICECET61485.2024.10698551
dc.identifier.isbn979-835039591-4
dc.identifier.scopus2-s2.0-85207432781
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/ICECET61485.2024.10698551
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6726
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofInternational Conference on Electrical, Computer, and Energy Technologies, ICECET 2024 -- 4th IEEE International Conference on Electrical, Computer, and Energy Technologies, ICECET 2024 -- 25 July 2024 through 27 July 2024 -- Sydney -- 203204en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCybersecurityen_US
dc.subjectDomain Name System (DNS)en_US
dc.subjectMachine Learningen_US
dc.subjectMalicious Domain Detectionen_US
dc.subjectNatural Language Processing (NLP)en_US
dc.titleSecurereg: Combining Nlp and Mlp for Enhanced Detection of Malicious Domain Name Registrationsen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication32d2136a-cb55-4ba5-9e30-1767c6f3b090
relation.isAuthorOfPublicatione02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscovery32d2136a-cb55-4ba5-9e30-1767c6f3b090

Files