Graph optimized locality preserving projection via heuristic optimization algorithms

dc.authorscopusid 26665865200
dc.authorscopusid 35105306400
dc.contributor.author Ceylan, Oğuzhan
dc.contributor.author Taşkin, G.
dc.contributor.other Management Information Systems
dc.date.accessioned 2023-10-19T15:05:36Z
dc.date.available 2023-10-19T15:05:36Z
dc.date.issued 2019
dc.department-temp Ceylan, O., Kadir Has University, Department of Management Information Systems, Istanbul, Turkey; Taşkin, G., Istanbul Technical University, Earthquake Engineering and Disaster Management Institute, Istanbul, Turkey en_US
dc.description The Institute of Electrical and Electronics Engineers, Geoscience and Remote Sensing Society (GRSS) en_US
dc.description 39th IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2019 --28 July 2019 through 2 August 2019 -- --154792 en_US
dc.description.abstract Dimensionality reduction has been an active research topic in hyperspectral image analysis due to complexity and nonlinearity of the hundreds of the spectral bands. Locality preserving projection (LPP) is a linear extension of the manifold learning and has been very effective in dimensionality reduction compared to linear methods. However, its performance heavily depends on construction of the graph affinity matrix, which has two parameters need to be optimized: k-nearest neighbor parameter and heat kernel parameter. These two parameters might be optimally chosen simply based on a grid search when using only one representative kernel parameter for all the features, but this solution is not feasible when considering a generalized heat kernel in construction the affinity matrix. In this paper, we propose to use heuristic methods, including harmony search (HS) and particle swarm optimization (PSO), in exploring the effects of the heat kernel parameters on embedding quality in terms of classification accuracy. The preliminary results obtained with the experiments on the hyperspectral images showed that HS performs better than PSO, and the heat kernel with multiple parameters achieves better performance than the isotropic kernel with single parameter. © 2019 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/IGARSS.2019.8900479 en_US
dc.identifier.endpage 3068 en_US
dc.identifier.scopus 2-s2.0-85113877324 en_US
dc.identifier.scopusquality N/A
dc.identifier.startpage 3065 en_US
dc.identifier.uri https://doi.org/10.1109/IGARSS.2019.8900479
dc.identifier.uri https://hdl.handle.net/20.500.12469/4965
dc.identifier.volume 2019-January en_US
dc.identifier.wosquality N/A
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof International Geoscience and Remote Sensing Symposium (IGARSS) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Dimensionality reduction en_US
dc.subject Harmony search en_US
dc.subject Manifold learning en_US
dc.subject Particle swarm optimization en_US
dc.subject Dimensionality reduction en_US
dc.subject Graph algorithms en_US
dc.subject Heuristic algorithms en_US
dc.subject Matrix algebra en_US
dc.subject Nearest neighbor search en_US
dc.subject Particle swarm optimization (PSO) en_US
dc.subject Remote sensing en_US
dc.subject Spectroscopy en_US
dc.subject Classification accuracy en_US
dc.subject Heuristic optimization algorithms en_US
dc.subject K-nearest neighbors en_US
dc.subject Kernel parameter en_US
dc.subject Linear extensions en_US
dc.subject Locality preserving projections en_US
dc.subject Manifold learning en_US
dc.subject Multiple parameters en_US
dc.subject Heuristic methods en_US
dc.title Graph optimized locality preserving projection via heuristic optimization algorithms en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscovery b80c3194-906c-4e78-a54c-e3cd1effc970
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4965.pdf
Size:
1.69 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text