Signature verification using conic section function neural network

gdc.relation.journal Computer And Information Sciences - ISCIS 2005, Proceedings en_US
dc.contributor.author Şenol, Canan
dc.contributor.author Yıldırım, Tülay
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2019-06-27T08:00:53Z
dc.date.available 2019-06-27T08:00:53Z
dc.date.issued 2005
dc.description.abstract This paper presents a new approach for off-line signature verification based on a hybrid neural network (Conic Section Function Neural Network-CSFNN). Artificial Neural Networks (ANNs) have recently become a very important method for classification and verification problems. In this work CSFNN was proposed for the signature verification and compared with two well known neural network architectures (Multilayer Perceptron-MLP and Radial Basis Function-RBF Networks). The proposed system was trained and tested on a signature database consisting of a total of 304 signature images taken from 8 different persons. A total of 256 samples (32 samples for each person) for training and 48 fake samples (6 fake samples belonging to each person) for testing were used. The results were presented and the comparisons were also made in terms of FAR (False Acceptance Rate) and FRR (False Rejection Rate). en_US]
dc.identifier.citationcount 8
dc.identifier.isbn 3-540-29414-7
dc.identifier.issn 0302-9743 en_US
dc.identifier.issn 1611-3349 en_US
dc.identifier.issn 0302-9743
dc.identifier.issn 1611-3349
dc.identifier.scopus 2-s2.0-33646496990 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/137
dc.language.iso en en_US
dc.publisher Springer-Verlag Berlin en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.title Signature verification using conic section function neural network en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Şenol, Canan en_US
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
gdc.description.endpage 532
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 524 en_US
gdc.description.volume 3733 en_US
gdc.identifier.wos WOS:000234179600053 en_US
gdc.scopus.citedcount 11
gdc.wos.citedcount 8
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery b20623fc-1264-4244-9847-a4729ca7508c

Files