Signature verification using conic section function neural network

dc.contributor.authorŞenol, Canan
dc.contributor.authorYıldırım, Tülay
dc.date.accessioned2019-06-27T08:00:53Z
dc.date.available2019-06-27T08:00:53Z
dc.date.issued2005
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractThis paper presents a new approach for off-line signature verification based on a hybrid neural network (Conic Section Function Neural Network-CSFNN). Artificial Neural Networks (ANNs) have recently become a very important method for classification and verification problems. In this work CSFNN was proposed for the signature verification and compared with two well known neural network architectures (Multilayer Perceptron-MLP and Radial Basis Function-RBF Networks). The proposed system was trained and tested on a signature database consisting of a total of 304 signature images taken from 8 different persons. A total of 256 samples (32 samples for each person) for training and 48 fake samples (6 fake samples belonging to each person) for testing were used. The results were presented and the comparisons were also made in terms of FAR (False Acceptance Rate) and FRR (False Rejection Rate).en_US]
dc.identifier.citation8
dc.identifier.endpage532
dc.identifier.isbn3-540-29414-7
dc.identifier.issn0302-9743en_US
dc.identifier.issn1611-3349en_US
dc.identifier.issn0302-9743
dc.identifier.issn1611-3349
dc.identifier.scopus2-s2.0-33646496990en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage524en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/137
dc.identifier.volume3733en_US
dc.identifier.wosWOS:000234179600053en_US
dc.identifier.wosqualityN/A
dc.institutionauthorŞenol, Cananen_US
dc.language.isoenen_US
dc.publisherSpringer-Verlag Berlinen_US
dc.relation.journalComputer And Information Sciences - ISCIS 2005, Proceedingsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.titleSignature verification using conic section function neural networken_US
dc.typeArticleen_US
dspace.entity.typePublication

Files