Em Based Stochastic Maximum Likelihood Approach for Localization of Near-Field Sources in 3-D
Loading...
Date
2004
Authors
Kabaoğlu, Nihat
Çırpan, Hakan Ali
Paker, Selçuk
Journal Title
Journal ISSN
Volume Title
Publisher
Walter De Gruyter Gmbh
Open Access Color
Green Open Access
Yes
OpenAIRE Downloads
OpenAIRE Views
Publicly Funded
No
Abstract
The goal of this paper is to estimate the locations of unknown sources in 3-D space from the data collected by a 2-D rectangular array. Various studies employing different estimation methods under near-field and far-field assumptions were presented in the past. In most of the previous studies location estimations of sources at the same plane with the antenna array were carried out by using algorithms having constraints for various situations indeed. In this study location estimations of sources that are placed at a different plane from the antenna array is given. In other words locations of sources in 3-D space is estimated by using a 2-D rectangular array. Maximum likelihood (ML) method is chosen as the estimator since it has a better resolution performance than the conventional methods in the presence of less number and highly correlated source signal samples and low signal to noise ratio. Besides these superiorities stability asymptotic unbiasedness asymptotic minimum variance properties as well as no restrictions on the antenna array are motivated the application of ML approach. Despite these advantages ML estimator has computational complexity. However this problem is tackled by the application of Expectation/Maximization (EM) iterative algorithm which converts the multidimensional search problem to one dimensional parallel search problems in order to prevent computational complexity. EM iterative algorithm is therefore adapted to the localization problem by the data (complete data) assumed to arrive to the sensors separately instead of observed data (incomplete data). Furthermore performance of the proposed algorithm is tested by deriving Cramer-Rao bounds based on the concentrated likelihood approach. Finally the applicability and effectiveness of the proposed algorithm is illustrated by some numerical simulations.
Description
Keywords
Maximum Likelihood estimation, Expectation, Maximization algorithm, Antenna arrays, Localization of near-field sources in 3-D space, Localization of near-field sources in 3-D space, Expectation, Antenna arrays, Maximum Likelihood estimation, Maximization algorithm
Turkish CoHE Thesis Center URL
Fields of Science
0202 electrical engineering, electronic engineering, information engineering, 02 engineering and technology
Citation
WoS Q
Q4
Scopus Q
Q3

OpenCitations Citation Count
1
Source
Frequenz
Volume
58
Issue
Start Page
178
End Page
184
PlumX Metrics
Citations
CrossRef : 1
Scopus : 2
Captures
Mendeley Readers : 3
Google Scholar™

OpenAlex FWCI
0.0
Sustainable Development Goals
8
DECENT WORK AND ECONOMIC GROWTH

10
REDUCED INEQUALITIES

11
SUSTAINABLE CITIES AND COMMUNITIES

17
PARTNERSHIPS FOR THE GOALS


