Assessing the effectiveness of OTT services, branded apps, and gamified loyalty giveaways on mobile customer churn in the telecom industry: A machine-learning approach

dc.authoridKiygi-Calli, Meltem/0000-0002-2979-9309
dc.authorscopusid59193142200
dc.authorscopusid27067862500
dc.authorscopusid57210113353
dc.authorscopusid58660566600
dc.authorwosidEl Oraiby, Maryam/KDB-8917-2024
dc.authorwosidCalli, Meltem/AAP-7361-2021
dc.contributor.authorÇağlıyor, Sendi
dc.contributor.authorKiygi-Calli, Meltem
dc.contributor.authorCagliyor, Sendi
dc.contributor.authorEl Oraiby, Maryam
dc.date.accessioned2024-10-15T19:40:06Z
dc.date.available2024-10-15T19:40:06Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Kirgiz, Omer Bugra; El Oraiby, Maryam] Kadir Has Univ, Sch Grad Studies, TR-34083 Istanbul, Turkiye; [Kiygi-Calli, Meltem; Cagliyor, Sendi] Kadir Has Univ, Dept Business Adm, TR-34083 Istanbul, Turkiyeen_US
dc.descriptionKiygi-Calli, Meltem/0000-0002-2979-9309en_US
dc.description.abstractTelecom operators allocate a significant amount of resources to retain their customers as the organic growth in the number of customers is slowing down. Gamified loyalty programs, branded apps, and over-the-top (OTT) services emerged as ways to develop customer acquisition and retention strategies. Despite these strategies, some mobile customers still churn; therefore, churn prediction plays an essential role in the sustainable future of telecom businesses. Churn prediction is used both to detect customers with a high propensity to churn and to identify the reasons behind their churn behavior. This study examines several features affecting the churn behavior of mobile customers, including branded apps, gamified loyalty programs, and OTT services. In this study, the secondary data is provided by a telecom operator and contains the attributes of both churner and non-churner mobile customers. Logistic regression and random forest classifiers are compared in terms of their predictive power, and we used the latter as the machine learning algorithm in the churn prediction model. To understand the variable importance, mean decrease in impurity and permutation importance are performed. The key findings of this research reveal that while gamified loyalty giveaways and branded app strategies are effective, OTT service strategies show lower importance in predicting mobile customer churn behavior.en_US
dc.description.woscitationindexScience Citation Index Expanded - Social Science Citation Index
dc.identifier.citation0
dc.identifier.doi10.1016/j.telpol.2024.102816
dc.identifier.issn0308-5961
dc.identifier.issn1879-3258
dc.identifier.issue8en_US
dc.identifier.scopus2-s2.0-85196965369
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.telpol.2024.102816
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6348
dc.identifier.volume48en_US
dc.identifier.wosWOS:001298995400001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevier Sci Ltden_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChurn predictionen_US
dc.subjectOver-the-top (OTT) servicesen_US
dc.subjectMachine learningen_US
dc.subjectTelecom operatoren_US
dc.subjectGamified loyalty giveawaysen_US
dc.subjectBranded appsen_US
dc.titleAssessing the effectiveness of OTT services, branded apps, and gamified loyalty giveaways on mobile customer churn in the telecom industry: A machine-learning approachen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication988e0e4a-68aa-4306-aa59-3212800245c5
relation.isAuthorOfPublication.latestForDiscovery988e0e4a-68aa-4306-aa59-3212800245c5

Files