Breaking the Performance Gap of Fully and Semi-Supervised Learning in Electromagnetic Signature Recognition

dc.contributor.author Wang, H.
dc.contributor.author Wang, Q.
dc.contributor.author Chen, L.
dc.contributor.author Fu, G.
dc.contributor.author Liu, X.
dc.contributor.author Dong, Z.
dc.contributor.author Panayırcı, Erdal
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:05:24Z
dc.date.available 2023-10-19T15:05:24Z
dc.date.issued 2023
dc.description.abstract Intelligent electromagnetic signature recognition is one of the key technologies in Internet-of-Things (IoT) device connection, which can improve system security and speed up the authentication process. In practical scenarios, as the number of IoT devices increases, electromagnetic features such as fingerprint and modulation signals also increase substantially. However, since intelligent recognition technology, such as Automatic Modulation Classification (AMC), requires a large amount of labeled data to train the neural network classifier, it is challenging to collect so much labeled data. To address the performance degradation challenges with small training data, we propose an efficient semi-supervised electromagnetic recognition framework to break the performance gap with the fully supervised learning scheme. This framework can fully use the unlabeled electromagnetic data collected during the authentication process for self-training to improve the classifier’s performance. According to the idea of consistency regularization, we design a signal augmentation method and propose an ensemble pseudo-label design algorithm to improve confidence. Moreover, we perform a convex combination of electromagnetic features to smooth the model decision boundary while generalizing to unknown data distribution regions. Experimental results on the modulated data demonstrate the performance superiority of the proposed algorithm, i.e., use less than 5% of data with no more than 10% performance drop. IEEE en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/JIOT.2023.3295397 en_US
dc.identifier.issn 2327-4662
dc.identifier.issn 2372-2541
dc.identifier.scopus 2-s2.0-85164779053 en_US
dc.identifier.uri https://doi.org/10.1109/JIOT.2023.3295397
dc.identifier.uri https://hdl.handle.net/20.500.12469/4870
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof IEEE Internet of Things Journal en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject convex combination en_US
dc.subject Data models en_US
dc.subject electromagnetic signature recognition en_US
dc.subject Electromagnetics en_US
dc.subject ensemble pseudo-label en_US
dc.subject Feature extraction en_US
dc.subject Internet of Things en_US
dc.subject Modulation en_US
dc.subject Semi-supervised learning en_US
dc.subject Semisupervised learning en_US
dc.subject signal augmentation methods en_US
dc.subject Training en_US
dc.subject Classification (of information) en_US
dc.subject Internet of things en_US
dc.subject Supervised learning en_US
dc.subject Augmentation methods en_US
dc.subject Convex combinations en_US
dc.subject Electromagnetic signature recognition en_US
dc.subject Electromagnetic signatures en_US
dc.subject Electromagnetics en_US
dc.subject Ensemble pseudo-label en_US
dc.subject Features extraction en_US
dc.subject Semi-supervised learning en_US
dc.subject Signal augmentation method en_US
dc.subject Signature recognition en_US
dc.subject Authentication en_US
dc.title Breaking the Performance Gap of Fully and Semi-Supervised Learning in Electromagnetic Signature Recognition en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Panayırcı, Erdal
gdc.author.scopusid 57218794711
gdc.author.scopusid 57064024200
gdc.author.scopusid 57218796050
gdc.author.scopusid 58487868600
gdc.author.scopusid 57216218600
gdc.author.scopusid 55336250100
gdc.author.scopusid 7005179513
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp Wang, H., School of Electrical and Information Engineering, Tianjin University, Tianjin, China; Wang, Q., School of Electrical and Information Engineering, Tianjin University, Tianjin, China; Chen, L., School of Electrical and Information Engineering, Tianjin University, Tianjin, China; Fu, G., School of Electrical and Information Engineering, Tianjin University, Tianjin, China; Liu, X., School of Electrical and Information Engineering, Tianjin University, Tianjin, China; Dong, Z., School of Information Science and Technology, Tibet University, Lasha, China; Panayirci, E., Department of Electrical and Electronics Engineering, Kadir Has University, Istanbul, Turkey en_US
gdc.description.endpage 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1 en_US
gdc.description.volume 11
gdc.description.wosquality Q1
gdc.identifier.openalex W4384284168
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6218085E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Modulation
gdc.oaire.keywords Internet of things
gdc.oaire.keywords Authentication
gdc.oaire.keywords Classification (of information)
gdc.oaire.keywords electromagnetic signature recognition
gdc.oaire.keywords Convex combinations
gdc.oaire.keywords Internet of Things
gdc.oaire.keywords Data models
gdc.oaire.keywords Features extraction
gdc.oaire.keywords Signature recognition
gdc.oaire.keywords Electromagnetics
gdc.oaire.keywords Augmentation methods
gdc.oaire.keywords Electromagnetic signature recognition
gdc.oaire.keywords convex combination
gdc.oaire.keywords Signal augmentation method
gdc.oaire.keywords Ensemble pseudo-label
gdc.oaire.keywords ensemble pseudo-label
gdc.oaire.keywords Semi-supervised learning
gdc.oaire.keywords signal augmentation methods
gdc.oaire.keywords Feature extraction
gdc.oaire.keywords Training
gdc.oaire.keywords Semisupervised learning
gdc.oaire.keywords Electromagnetic signatures
gdc.oaire.keywords Supervised learning
gdc.oaire.popularity 3.8687578E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.203
gdc.openalex.normalizedpercentile 0.48
gdc.opencitations.count 1
gdc.plumx.mendeley 1
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
relation.isAuthorOfPublication 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isAuthorOfPublication.latestForDiscovery 5371ab5d-9cd9-4d1f-8681-a65b3d5d6add
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files