Mathematical Models for Phase Transitions in Biogels

dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Öğrenci, Arif Selçuk
dc.contributor.author Pekcan, Mehmet Önder
dc.contributor.author Pekcan, Önder
dc.contributor.other Industrial Engineering
dc.contributor.other Molecular Biology and Genetics
dc.date.accessioned 2020-12-18T19:31:19Z
dc.date.available 2020-12-18T19:31:19Z
dc.date.issued 2019
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü en_US
dc.description.abstract It has been shown that reversible and irreversible phase transitions of biogels can be represented by epidemic models. The irreversible chemical sol-gel transitions are modeled by the Susceptible-Exposed-Infected-Removed (SEIR) or Susceptible-Infected-Removed (SIR) epidemic systems whereas reversible physical gels are modeled by a modification of the Susceptible-Infected-Susceptible (SIS) system. Measured sol-gel and gel-sol transition data have been fitted to the solutions of the epidemic models, either by solving the differential equations directly (SIR and SEIR models) or by nonlinear regression (SIS model). The gel point is represented as the "critical point of sigmoid," defined as the limit point of the locations of the extreme values of its derivatives. Then, the parameters of the sigmoidal curve representing the gelation process are used to predict the gel point and its relative position with respect to the transition point, that is, the maximum of the first derivative with respect to time. For chemical gels, the gel point is always located before the maximum of the first derivative and moves backward in time as the strength of the activation increases. For physical gels, the critical point for the sol-gel transition occurs before the maximum of the first derivative with respect to time, that is, it is located at the right of this maximum with respect to temperature. For gel-sol transitions, the critical point is close to the transition point; the critical point occurs after the maximum of the first derivative for low concentrations whereas the critical point occurs after the maximum of the first derivative for higher concentrations. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1142/S0217984919501112 en_US
dc.identifier.issn 0217-9849 en_US
dc.identifier.issn 1793-6640 en_US
dc.identifier.issn 0217-9849
dc.identifier.issn 1793-6640
dc.identifier.issue 9 en_US
dc.identifier.scopus 2-s2.0-85062917906 en_US
dc.identifier.scopusquality Q3
dc.identifier.uri https://hdl.handle.net/20.500.12469/3570
dc.identifier.uri https://doi.org/10.1142/S0217984919501112
dc.identifier.volume 33 en_US
dc.identifier.wos WOS:000463148900013 en_US
dc.institutionauthor Bilge, Ayşe Hümeyra en_US
dc.institutionauthor Öǧrenci, Arif Selçuk en_US
dc.institutionauthor Pekcan, Önder en_US
dc.language.iso en en_US
dc.publisher World Scientific Publ Co Pte Ltd en_US
dc.relation.journal Modern Physics Letters B en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 2
dc.subject Sol-gel and gel-sol phase transition en_US
dc.subject Gel point en_US
dc.subject Critical point of sigmoid en_US
dc.subject Epidemic model en_US
dc.subject Generalized logistic curve en_US
dc.title Mathematical Models for Phase Transitions in Biogels en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication e5459272-ce6e-44cf-a186-293850946f24
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication 71ce8622-7449-4a6a-8fad-44d881416546
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files