Mathematical models for phase transitions in biogels

dc.contributor.authorBilge, Ayşe Hümeyra
dc.contributor.authorÖğrenci, Arif Selçuk
dc.contributor.authorPekcan, Önder
dc.date.accessioned2020-12-18T19:31:19Z
dc.date.available2020-12-18T19:31:19Z
dc.date.issued2019
dc.departmentFakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümüen_US
dc.description.abstractIt has been shown that reversible and irreversible phase transitions of biogels can be represented by epidemic models. The irreversible chemical sol-gel transitions are modeled by the Susceptible-Exposed-Infected-Removed (SEIR) or Susceptible-Infected-Removed (SIR) epidemic systems whereas reversible physical gels are modeled by a modification of the Susceptible-Infected-Susceptible (SIS) system. Measured sol-gel and gel-sol transition data have been fitted to the solutions of the epidemic models, either by solving the differential equations directly (SIR and SEIR models) or by nonlinear regression (SIS model). The gel point is represented as the "critical point of sigmoid," defined as the limit point of the locations of the extreme values of its derivatives. Then, the parameters of the sigmoidal curve representing the gelation process are used to predict the gel point and its relative position with respect to the transition point, that is, the maximum of the first derivative with respect to time. For chemical gels, the gel point is always located before the maximum of the first derivative and moves backward in time as the strength of the activation increases. For physical gels, the critical point for the sol-gel transition occurs before the maximum of the first derivative with respect to time, that is, it is located at the right of this maximum with respect to temperature. For gel-sol transitions, the critical point is close to the transition point; the critical point occurs after the maximum of the first derivative for low concentrations whereas the critical point occurs after the maximum of the first derivative for higher concentrations.en_US
dc.identifier.citation2
dc.identifier.doi10.1142/S0217984919501112en_US
dc.identifier.issn0217-9849en_US
dc.identifier.issn1793-6640en_US
dc.identifier.issn0217-9849
dc.identifier.issn1793-6640
dc.identifier.issue9en_US
dc.identifier.scopus2-s2.0-85062917906en_US
dc.identifier.scopusqualityQ3
dc.identifier.urihttps://hdl.handle.net/20.500.12469/3570
dc.identifier.urihttps://doi.org/10.1142/S0217984919501112
dc.identifier.volume33en_US
dc.identifier.wosWOS:000463148900013en_US
dc.identifier.wosqualityN/A
dc.institutionauthorBilge, Ayşe Hümeyraen_US
dc.institutionauthorÖǧrenci, Arif Selçuken_US
dc.institutionauthorPekcan, Önderen_US
dc.language.isoenen_US
dc.publisherWorld Scientific Publ Co Pte Ltden_US
dc.relation.journalModern Physics Letters Ben_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSol-gel and gel-sol phase transitionen_US
dc.subjectGel pointen_US
dc.subjectCritical point of sigmoiden_US
dc.subjectEpidemic modelen_US
dc.subjectGeneralized logistic curveen_US
dc.titleMathematical models for phase transitions in biogelsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery1b50a6b2-7290-44da-b8d5-f048fea8b315

Files