Determining the critical point of a sigmoidal curve via its fourier transform

dc.contributor.authorBilge, Ayşe Hümeyra
dc.contributor.authorÖzdemir, Yunus
dc.date.accessioned2021-02-20T12:36:05Z
dc.date.available2021-02-20T12:36:05Z
dc.date.issued2016
dc.description.abstractA sigmoidal curve y(t) is a monotone increasing curve such that all derivatives vanish at infinity. Let tn be the point where the nth derivative of y(t) reaches its global extremum. In the previous work on sol-gel transition modelled by the Susceptible-Infected- Recovered (SIR) system, we observed that the sequence {tn } seemed to converge to a point that agrees qualitatively with the location of the gel point [2]. In the present work we outline a proof that for sigmoidal curves satisfying fairly general assumptions on their Fourier transform, the sequence {tn } is convergent and we call it "the critical point of the sigmoidal curve". In the context of phase transitions, the limit point is interpreted as a junction point of two different regimes where all derivatives undergo their highest rate of change.en_US
dc.identifier.citation2
dc.identifier.doi10.1088/1742-6596/738/1/012062en_US
dc.identifier.issn1742-6588en_US
dc.identifier.issn1742-6588
dc.identifier.issue1en_US
dc.identifier.scopus2-s2.0-84988728257en_US
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://hdl.handle.net/20.500.12469/3970
dc.identifier.volume738en_US
dc.identifier.wosWOS:000403403900062en_US
dc.identifier.wosqualityN/A
dc.institutionauthorBilge, Ayşe Hümeyraen_US
dc.institutionauthorÖzdemir, Yunusen_US
dc.language.isoenen_US
dc.publisherInstitute of Physics Publishingen_US
dc.relation.journalJournal of Physics: Conference Seriesen_US
dc.relation.publicationcategoryKitap Bölümü - Uluslararasıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectIntegrated circuitsen_US
dc.subjectSol-gelsen_US
dc.titleDetermining the critical point of a sigmoidal curve via its fourier transformen_US
dc.typeBook Parten_US
dspace.entity.typePublication
relation.isAuthorOfPublication1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery1b50a6b2-7290-44da-b8d5-f048fea8b315

Files