Determining the Critical Point of a Sigmoidal Curve Via Its Fourier Transform

dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Özdemir, Yunus
dc.contributor.other Industrial Engineering
dc.date.accessioned 2021-02-20T12:36:05Z
dc.date.available 2021-02-20T12:36:05Z
dc.date.issued 2016
dc.description.abstract A sigmoidal curve y(t) is a monotone increasing curve such that all derivatives vanish at infinity. Let tn be the point where the nth derivative of y(t) reaches its global extremum. In the previous work on sol-gel transition modelled by the Susceptible-Infected- Recovered (SIR) system, we observed that the sequence {tn } seemed to converge to a point that agrees qualitatively with the location of the gel point [2]. In the present work we outline a proof that for sigmoidal curves satisfying fairly general assumptions on their Fourier transform, the sequence {tn } is convergent and we call it "the critical point of the sigmoidal curve". In the context of phase transitions, the limit point is interpreted as a junction point of two different regimes where all derivatives undergo their highest rate of change. en_US
dc.identifier.citationcount 2
dc.identifier.doi 10.1088/1742-6596/738/1/012062 en_US
dc.identifier.issn 1742-6588 en_US
dc.identifier.issn 1742-6588
dc.identifier.issue 1 en_US
dc.identifier.scopus 2-s2.0-84988728257 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3970
dc.identifier.volume 738 en_US
dc.identifier.wos WOS:000403403900062 en_US
dc.institutionauthor Bilge, Ayşe Hümeyra en_US
dc.institutionauthor Özdemir, Yunus en_US
dc.language.iso en en_US
dc.publisher Institute of Physics Publishing en_US
dc.relation.journal Journal of Physics: Conference Series en_US
dc.relation.publicationcategory Kitap Bölümü - Uluslararası en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 2
dc.subject Integrated circuits en_US
dc.subject Sol-gels en_US
dc.title Determining the Critical Point of a Sigmoidal Curve Via Its Fourier Transform en_US
dc.type Book Part en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files