Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks
| dc.contributor.author | Bal, Mustafa | |
| dc.contributor.author | Marey, Ahmed | |
| dc.contributor.author | Ates, Hasan F. | |
| dc.contributor.author | Baykas, Tuncer | |
| dc.contributor.author | Gunturk, Bahadir K. | |
| dc.contributor.other | Electrical-Electronics Engineering | |
| dc.contributor.other | 05. Faculty of Engineering and Natural Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2023-10-19T15:11:55Z | |
| dc.date.available | 2023-10-19T15:11:55Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Path loss exponent and shadowing factor are among important wireless channel parameters. These parameters can be estimated using field measurements or ray-tracing simulations, which are costly and time-consuming. In this letter, we take a deep neural network-based approach, which takes either satellite image or height map of a target region as input, and estimates the desired channel parameters. We use the well-known VGG-16 architecture, pretrained on the ImageNet dataset, as the backbone to extract image features, modify it as a regression network to produce channel parameters, and retrain it on our dataset, which consists of satellite image or height map as input and channel parameters as target values. We demonstrate that deep networks can be successfully utilized in estimating path loss exponent and shadowing factor of a region, simply from the region's satellite image or height map. The trained models and test codes are publicly available on a Github page. | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [215E324] | en_US |
| dc.description.sponsorship | This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 215E324. | en_US |
| dc.identifier.citationcount | 7 | |
| dc.identifier.doi | 10.1109/LAWP.2022.3174357 | en_US |
| dc.identifier.issn | 1536-1225 | |
| dc.identifier.issn | 1548-5757 | |
| dc.identifier.scopus | 2-s2.0-85132524371 | en_US |
| dc.identifier.uri | https://doi.org/10.1109/LAWP.2022.3174357 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/5274 | |
| dc.khas | 20231019-WoS | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE-Inst Electrical Electronics Engineers Inc | en_US |
| dc.relation.ispartof | Ieee Antennas and Wireless Propagation Letters | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Fixed Wireless Access | En_Us |
| dc.subject | Satellites | en_US |
| dc.subject | Shadow mapping | en_US |
| dc.subject | Training | en_US |
| dc.subject | Images | En_Us |
| dc.subject | Solid modeling | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | Wireless communication | en_US |
| dc.subject | Models | En_Us |
| dc.subject | Receivers | en_US |
| dc.subject | Deep learning | en_US |
| dc.subject | Fixed Wireless Access | |
| dc.subject | height map | en_US |
| dc.subject | Images | |
| dc.subject | regression | en_US |
| dc.subject | Models | |
| dc.subject | wireless channel parameter estimation | en_US |
| dc.title | Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Gunturk, Bahadir/0000-0003-0779-9620 | |
| gdc.author.id | Ates, Hasan/0000-0002-6842-1528 | |
| gdc.author.id | Marey, Ahmed/0000-0002-4566-4551 | |
| gdc.author.id | BAL, MUSTAFA/0000-0002-0151-0067 | |
| gdc.author.institutional | Baykaş, Tunçer | |
| gdc.author.wosid | Gunturk, Bahadir/G-1609-2019 | |
| gdc.author.wosid | Ates, Hasan/M-5160-2013 | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.departmenttemp | [Bal, Mustafa; Marey, Ahmed; Ates, Hasan F.; Gunturk, Bahadir K.] Istanbul Medipol Univ, TR-34810 Istanbul, Turkey; [Baykas, Tuncer] Kadir Has Univ, TR-34083 Istanbul, Turkey | en_US |
| gdc.description.endpage | 1566 | en_US |
| gdc.description.issue | 8 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1562 | en_US |
| gdc.description.volume | 21 | en_US |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W4285203157 | |
| gdc.identifier.wos | WOS:000835774100014 | en_US |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 2.884901E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Satellites | |
| gdc.oaire.keywords | Shadow mapping | |
| gdc.oaire.keywords | Height Map | |
| gdc.oaire.keywords | Wireless communication | |
| gdc.oaire.keywords | Deep learning | |
| gdc.oaire.keywords | Receivers | |
| gdc.oaire.keywords | Regression | |
| gdc.oaire.keywords | Deep Learning | |
| gdc.oaire.keywords | Fixed Wireless Access | |
| gdc.oaire.keywords | Models | |
| gdc.oaire.keywords | height map | |
| gdc.oaire.keywords | Solid modeling | |
| gdc.oaire.keywords | Images | |
| gdc.oaire.keywords | Wireless Channel Parameter Estimation | |
| gdc.oaire.keywords | Training | |
| gdc.oaire.keywords | regression | |
| gdc.oaire.keywords | wireless channel parameter estimation | |
| gdc.oaire.popularity | 7.941951E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.fwci | 0.917 | |
| gdc.openalex.normalizedpercentile | 0.53 | |
| gdc.opencitations.count | 9 | |
| gdc.plumx.crossrefcites | 6 | |
| gdc.plumx.mendeley | 7 | |
| gdc.plumx.scopuscites | 14 | |
| gdc.scopus.citedcount | 14 | |
| gdc.wos.citedcount | 10 | |
| relation.isAuthorOfPublication | ab26f923-9923-42a2-b21e-2dd862cd92be | |
| relation.isAuthorOfPublication.latestForDiscovery | ab26f923-9923-42a2-b21e-2dd862cd92be | |
| relation.isOrgUnitOfPublication | 12b0068e-33e6-48db-b92a-a213070c3a8d | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 12b0068e-33e6-48db-b92a-a213070c3a8d |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 5274.pdf
- Size:
- 2.78 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text