Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks

dc.contributor.author Bal, Mustafa
dc.contributor.author Marey, Ahmed
dc.contributor.author Ates, Hasan F.
dc.contributor.author Baykas, Tuncer
dc.contributor.author Gunturk, Bahadir K.
dc.contributor.other Electrical-Electronics Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:11:55Z
dc.date.available 2023-10-19T15:11:55Z
dc.date.issued 2022
dc.description.abstract Path loss exponent and shadowing factor are among important wireless channel parameters. These parameters can be estimated using field measurements or ray-tracing simulations, which are costly and time-consuming. In this letter, we take a deep neural network-based approach, which takes either satellite image or height map of a target region as input, and estimates the desired channel parameters. We use the well-known VGG-16 architecture, pretrained on the ImageNet dataset, as the backbone to extract image features, modify it as a regression network to produce channel parameters, and retrain it on our dataset, which consists of satellite image or height map as input and channel parameters as target values. We demonstrate that deep networks can be successfully utilized in estimating path loss exponent and shadowing factor of a region, simply from the region's satellite image or height map. The trained models and test codes are publicly available on a Github page. en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [215E324] en_US
dc.description.sponsorship This work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 215E324. en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1109/LAWP.2022.3174357 en_US
dc.identifier.issn 1536-1225
dc.identifier.issn 1548-5757
dc.identifier.scopus 2-s2.0-85132524371 en_US
dc.identifier.uri https://doi.org/10.1109/LAWP.2022.3174357
dc.identifier.uri https://hdl.handle.net/20.500.12469/5274
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc en_US
dc.relation.ispartof Ieee Antennas and Wireless Propagation Letters en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Fixed Wireless Access En_Us
dc.subject Satellites en_US
dc.subject Shadow mapping en_US
dc.subject Training en_US
dc.subject Images En_Us
dc.subject Solid modeling en_US
dc.subject Deep learning en_US
dc.subject Wireless communication en_US
dc.subject Models En_Us
dc.subject Receivers en_US
dc.subject Deep learning en_US
dc.subject Fixed Wireless Access
dc.subject height map en_US
dc.subject Images
dc.subject regression en_US
dc.subject Models
dc.subject wireless channel parameter estimation en_US
dc.title Regression of Large-Scale Path Loss Parameters Using Deep Neural Networks en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Gunturk, Bahadir/0000-0003-0779-9620
gdc.author.id Ates, Hasan/0000-0002-6842-1528
gdc.author.id Marey, Ahmed/0000-0002-4566-4551
gdc.author.id BAL, MUSTAFA/0000-0002-0151-0067
gdc.author.institutional Baykaş, Tunçer
gdc.author.wosid Gunturk, Bahadir/G-1609-2019
gdc.author.wosid Ates, Hasan/M-5160-2013
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp [Bal, Mustafa; Marey, Ahmed; Ates, Hasan F.; Gunturk, Bahadir K.] Istanbul Medipol Univ, TR-34810 Istanbul, Turkey; [Baykas, Tuncer] Kadir Has Univ, TR-34083 Istanbul, Turkey en_US
gdc.description.endpage 1566 en_US
gdc.description.issue 8 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.startpage 1562 en_US
gdc.description.volume 21 en_US
gdc.description.wosquality Q2
gdc.identifier.openalex W4285203157
gdc.identifier.wos WOS:000835774100014 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.884901E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Satellites
gdc.oaire.keywords Shadow mapping
gdc.oaire.keywords Height Map
gdc.oaire.keywords Wireless communication
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Receivers
gdc.oaire.keywords Regression
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords Fixed Wireless Access
gdc.oaire.keywords Models
gdc.oaire.keywords height map
gdc.oaire.keywords Solid modeling
gdc.oaire.keywords Images
gdc.oaire.keywords Wireless Channel Parameter Estimation
gdc.oaire.keywords Training
gdc.oaire.keywords regression
gdc.oaire.keywords wireless channel parameter estimation
gdc.oaire.popularity 7.941951E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0211 other engineering and technologies
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.openalex.fwci 0.917
gdc.openalex.normalizedpercentile 0.53
gdc.opencitations.count 9
gdc.plumx.crossrefcites 6
gdc.plumx.mendeley 7
gdc.plumx.scopuscites 14
gdc.scopus.citedcount 14
gdc.wos.citedcount 10
relation.isAuthorOfPublication ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isAuthorOfPublication.latestForDiscovery ab26f923-9923-42a2-b21e-2dd862cd92be
relation.isOrgUnitOfPublication 12b0068e-33e6-48db-b92a-a213070c3a8d
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 12b0068e-33e6-48db-b92a-a213070c3a8d

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5274.pdf
Size:
2.78 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text