Invariant Manifolds of Homoclinic Orbits and the Dynamical Consequences of a Super-Homoclinic: a Case Study in R4 With Z2-Symmetry and Integral of Motion
| dc.contributor.author | Bakrani, Sajjad | |
| dc.contributor.author | Lamb, Jeroen S. W. | |
| dc.contributor.author | Turaev, Dmitry | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2023-10-19T15:11:32Z | |
| dc.date.available | 2023-10-19T15:11:32Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | We consider a Z(2)-equivariant flow in R-4 with an integral of motion and a hyperbolic equilibrium with a transverse homoclinic orbit Gamma. We provide criteria for the existence of stable and unstable invariant manifolds of Gamma. We prove that if these manifolds intersect transversely, creating a so-called super-homoclinic, then in any neighborhood of this super-homoclinic there exist infinitely many multi-pulse homoclinic loops. An application to a system of coupled nonlinear Schrodinger equations is considered. (C) 2022 The Authors. Published by Elsevier Inc. | en_US |
| dc.identifier.citationcount | 0 | |
| dc.identifier.doi | 10.1016/j.jde.2022.04.002 | en_US |
| dc.identifier.issn | 0022-0396 | |
| dc.identifier.issn | 1090-2732 | |
| dc.identifier.scopus | 2-s2.0-85129075632 | en_US |
| dc.identifier.uri | https://doi.org/10.1016/j.jde.2022.04.002 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/5060 | |
| dc.khas | 20231019-WoS | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Academic Press Inc Elsevier Science | en_US |
| dc.relation.ispartof | Journal of Differential Equations | en_US |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.subject | Systems | En_Us |
| dc.subject | Classification | En_Us |
| dc.subject | Saddle | En_Us |
| dc.subject | Homoclinic | en_US |
| dc.subject | Systems | |
| dc.subject | Super-homoclinic | en_US |
| dc.subject | Classification | |
| dc.subject | Invariant manifold | en_US |
| dc.subject | Saddle | |
| dc.subject | Coupled Schrodinger equations | en_US |
| dc.title | Invariant Manifolds of Homoclinic Orbits and the Dynamical Consequences of a Super-Homoclinic: a Case Study in R4 With Z2-Symmetry and Integral of Motion | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Bakrani, Sajjad/0000-0001-7814-0992 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.departmenttemp | [Bakrani, Sajjad; Lamb, Jeroen S. W.; Turaev, Dmitry] Imperial Coll London, Dept Math, London SW7 2AZ, England; [Bakrani, Sajjad] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkey | en_US |
| gdc.description.endpage | 63 | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1 | en_US |
| gdc.description.volume | 327 | en_US |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4225010438 | |
| gdc.identifier.wos | WOS:000819929700001 | en_US |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.8536318E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.2058837E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 0.112 | |
| gdc.openalex.normalizedpercentile | 0.28 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| gdc.wos.citedcount | 1 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b20623fc-1264-4244-9847-a4729ca7508c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 5060.pdf
- Size:
- 2.06 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text