Invariant Manifolds of Homoclinic Orbits and the Dynamical Consequences of a Super-Homoclinic: a Case Study in R4 With Z2-Symmetry and Integral of Motion
dc.authorid | Bakrani, Sajjad/0000-0001-7814-0992 | |
dc.contributor.author | Bakrani, Sajjad | |
dc.contributor.author | Lamb, Jeroen S. W. | |
dc.contributor.author | Turaev, Dmitry | |
dc.date.accessioned | 2023-10-19T15:11:32Z | |
dc.date.available | 2023-10-19T15:11:32Z | |
dc.date.issued | 2022 | |
dc.department-temp | [Bakrani, Sajjad; Lamb, Jeroen S. W.; Turaev, Dmitry] Imperial Coll London, Dept Math, London SW7 2AZ, England; [Bakrani, Sajjad] Kadir Has Univ, Fac Engn & Nat Sci, TR-34083 Istanbul, Turkey | en_US |
dc.description.abstract | We consider a Z(2)-equivariant flow in R-4 with an integral of motion and a hyperbolic equilibrium with a transverse homoclinic orbit Gamma. We provide criteria for the existence of stable and unstable invariant manifolds of Gamma. We prove that if these manifolds intersect transversely, creating a so-called super-homoclinic, then in any neighborhood of this super-homoclinic there exist infinitely many multi-pulse homoclinic loops. An application to a system of coupled nonlinear Schrodinger equations is considered. (C) 2022 The Authors. Published by Elsevier Inc. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.jde.2022.04.002 | en_US |
dc.identifier.endpage | 63 | en_US |
dc.identifier.issn | 0022-0396 | |
dc.identifier.issn | 1090-2732 | |
dc.identifier.scopus | 2-s2.0-85129075632 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.startpage | 1 | en_US |
dc.identifier.uri | https://doi.org/10.1016/j.jde.2022.04.002 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/5060 | |
dc.identifier.volume | 327 | en_US |
dc.identifier.wos | WOS:000819929700001 | en_US |
dc.identifier.wosquality | Q1 | |
dc.khas | 20231019-WoS | en_US |
dc.language.iso | en | en_US |
dc.publisher | Academic Press Inc Elsevier Science | en_US |
dc.relation.ispartof | Journal of Differential Equations | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Systems | En_Us |
dc.subject | Classification | En_Us |
dc.subject | Saddle | En_Us |
dc.subject | Homoclinic | en_US |
dc.subject | Systems | |
dc.subject | Super-homoclinic | en_US |
dc.subject | Classification | |
dc.subject | Invariant manifold | en_US |
dc.subject | Saddle | |
dc.subject | Coupled Schrodinger equations | en_US |
dc.title | Invariant Manifolds of Homoclinic Orbits and the Dynamical Consequences of a Super-Homoclinic: a Case Study in R4 With Z2-Symmetry and Integral of Motion | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 5060.pdf
- Size:
- 2.06 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text