Performance analyses of mesh-based local Finite Element Method and meshless global RBF Collocation Method for solving Poisson and Stokes equations

dc.authoridGURKAN, Ceren/0000-0002-1240-5801
dc.contributor.authorGürkan, Ceren
dc.contributor.authorGurkan, Ceren
dc.contributor.authorAvci, Cem
dc.date.accessioned2023-10-19T15:11:39Z
dc.date.available2023-10-19T15:11:39Z
dc.date.issued2022
dc.department-temp[Karakan, Ismet] Middle East Tech Univ, Dept Civil Engn, METU, TR-06800 Ankara, Turkey; [Gurkan, Ceren] Kadir Has Univ, Dept Civil Engn, Kadir Has Cd, TR-34083 Istanbul, Turkey; [Avci, Cem] Bogazici Univ, Dept Civil Engn, TR-34342 Istanbul, Turkeyen_US
dc.description.abstractSteady and unsteady Poisson and Stokes equations are solved using mesh dependent Finite Element Method and meshless Radial Basis Function Collocation Method to compare the performances of these two numerical techniques across several criteria. The accuracy of Radial Basis Function Collocation Method with multiquadrics is enhanced by implementing a shape parameter optimization algorithm. For the time-dependent problems, time discretization is done using Backward Euler Method. The performances are assessed over the accuracy, runtime, condition number, and ease of implementation. Three error kinds considered; least square error, root mean square error and maximum relative error. To calculate the least square error using meshless Radial Basis Function Collocation Method, a novel technique is implemented. Imaginary numerical solution surfaces are created, then the volume between those imaginary surfaces and the analytic solution surfaces is calculated, ensuring a fair error calculation. Lastly, all results are put together and trends are observed. The change in runtime vs. accuracy and number of nodes; and the change in accuracy vs. the number of nodes is analyzed. The study indicates the criteria under which Finite Element Method performs better and conditions when Radial Basis Function Collocation Method outperforms its mesh dependent counterpart.(c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved.en_US
dc.identifier.citation1
dc.identifier.doi10.1016/j.matcom.2022.02.015en_US
dc.identifier.endpage150en_US
dc.identifier.issn0378-4754
dc.identifier.issn1872-7166
dc.identifier.scopus2-s2.0-85125019005en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage127en_US
dc.identifier.urihttps://doi.org/10.1016/j.matcom.2022.02.015
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5148
dc.identifier.volume197en_US
dc.identifier.wosWOS:000790399300007en_US
dc.identifier.wosqualityQ1
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofMathematics and Computers in Simulationen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectPoint Interpolation MethodEn_Us
dc.subjectData Approximation SchemeEn_Us
dc.subjectGalerkin Mlpg ApproachEn_Us
dc.subjectRadial Basis FunctionsEn_Us
dc.subjectVibration AnalysesEn_Us
dc.subjectConvergenceEn_Us
dc.subjectMultiquadricsEn_Us
dc.subjectFormulationEn_Us
dc.subjectPoint Interpolation Method
dc.subjectData Approximation Scheme
dc.subjectGalerkin Mlpg Approach
dc.subjectRadial Basis Functions
dc.subjectElliptic problemsen_US
dc.subjectVibration Analyses
dc.subjectContinuous Galerkinen_US
dc.subjectConvergence
dc.subjectFinite Element Methoden_US
dc.subjectMultiquadrics
dc.subjectRadial Basis Function Collocation Methoden_US
dc.subjectFormulation
dc.subjectComparison analysisen_US
dc.titlePerformance analyses of mesh-based local Finite Element Method and meshless global RBF Collocation Method for solving Poisson and Stokes equationsen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication0e95cb67-6dd8-43e6-b6b0-990755ef2ed6
relation.isAuthorOfPublication.latestForDiscovery0e95cb67-6dd8-43e6-b6b0-990755ef2ed6

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5148.pdf
Size:
4.83 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text