Performance Analyses of Mesh-Based Local Finite Element Method and Meshless Global Rbf Collocation Method for Solving Poisson and Stokes Equations

dc.authorid GURKAN, Ceren/0000-0002-1240-5801
dc.contributor.author Karakan, Ismet
dc.contributor.author Gürkan, Ceren
dc.contributor.author Gurkan, Ceren
dc.contributor.author Avci, Cem
dc.contributor.other Civil Engineering
dc.date.accessioned 2023-10-19T15:11:39Z
dc.date.available 2023-10-19T15:11:39Z
dc.date.issued 2022
dc.department-temp [Karakan, Ismet] Middle East Tech Univ, Dept Civil Engn, METU, TR-06800 Ankara, Turkey; [Gurkan, Ceren] Kadir Has Univ, Dept Civil Engn, Kadir Has Cd, TR-34083 Istanbul, Turkey; [Avci, Cem] Bogazici Univ, Dept Civil Engn, TR-34342 Istanbul, Turkey en_US
dc.description.abstract Steady and unsteady Poisson and Stokes equations are solved using mesh dependent Finite Element Method and meshless Radial Basis Function Collocation Method to compare the performances of these two numerical techniques across several criteria. The accuracy of Radial Basis Function Collocation Method with multiquadrics is enhanced by implementing a shape parameter optimization algorithm. For the time-dependent problems, time discretization is done using Backward Euler Method. The performances are assessed over the accuracy, runtime, condition number, and ease of implementation. Three error kinds considered; least square error, root mean square error and maximum relative error. To calculate the least square error using meshless Radial Basis Function Collocation Method, a novel technique is implemented. Imaginary numerical solution surfaces are created, then the volume between those imaginary surfaces and the analytic solution surfaces is calculated, ensuring a fair error calculation. Lastly, all results are put together and trends are observed. The change in runtime vs. accuracy and number of nodes; and the change in accuracy vs. the number of nodes is analyzed. The study indicates the criteria under which Finite Element Method performs better and conditions when Radial Basis Function Collocation Method outperforms its mesh dependent counterpart.(c) 2022 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights reserved. en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1016/j.matcom.2022.02.015 en_US
dc.identifier.endpage 150 en_US
dc.identifier.issn 0378-4754
dc.identifier.issn 1872-7166
dc.identifier.scopus 2-s2.0-85125019005 en_US
dc.identifier.scopusquality Q1
dc.identifier.startpage 127 en_US
dc.identifier.uri https://doi.org/10.1016/j.matcom.2022.02.015
dc.identifier.uri https://hdl.handle.net/20.500.12469/5148
dc.identifier.volume 197 en_US
dc.identifier.wos WOS:000790399300007 en_US
dc.identifier.wosquality Q1
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Elsevier en_US
dc.relation.ispartof Mathematics and Computers in Simulation en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 3
dc.subject Point Interpolation Method En_Us
dc.subject Data Approximation Scheme En_Us
dc.subject Galerkin Mlpg Approach En_Us
dc.subject Radial Basis Functions En_Us
dc.subject Vibration Analyses En_Us
dc.subject Convergence En_Us
dc.subject Multiquadrics En_Us
dc.subject Formulation En_Us
dc.subject Point Interpolation Method
dc.subject Data Approximation Scheme
dc.subject Galerkin Mlpg Approach
dc.subject Radial Basis Functions
dc.subject Elliptic problems en_US
dc.subject Vibration Analyses
dc.subject Continuous Galerkin en_US
dc.subject Convergence
dc.subject Finite Element Method en_US
dc.subject Multiquadrics
dc.subject Radial Basis Function Collocation Method en_US
dc.subject Formulation
dc.subject Comparison analysis en_US
dc.title Performance Analyses of Mesh-Based Local Finite Element Method and Meshless Global Rbf Collocation Method for Solving Poisson and Stokes Equations en_US
dc.type Article en_US
dc.wos.citedbyCount 2
dspace.entity.type Publication
relation.isAuthorOfPublication 0e95cb67-6dd8-43e6-b6b0-990755ef2ed6
relation.isAuthorOfPublication.latestForDiscovery 0e95cb67-6dd8-43e6-b6b0-990755ef2ed6
relation.isOrgUnitOfPublication 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a
relation.isOrgUnitOfPublication.latestForDiscovery 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5148.pdf
Size:
4.83 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text