Benchmark Static Api Call Datasets for Malware Family Classification

dc.authorscopusid57885628000
dc.authorscopusid57370585700
dc.authorscopusid57219836294
dc.authorscopusid57887008300
dc.authorscopusid56497768800
dc.authorscopusid6507328166
dc.contributor.authorGencaydin, B.
dc.contributor.authorKahya, C.N.
dc.contributor.authorDemirkiran, F.
dc.contributor.authorDuzgun, B.
dc.contributor.authorCayir, A.
dc.contributor.authorDag, H.
dc.date.accessioned2023-10-19T15:05:38Z
dc.date.available2023-10-19T15:05:38Z
dc.date.issued2022
dc.department-tempGencaydin, B., Computer Engineering Gebze Technical University, Kocaeli, Turkey; Kahya, C.N., Management Information Systems Kadir Has University, Istanbul, Turkey; Demirkiran, F., Kadir Has University, Department of Cyber Security, Istanbul, Turkey; Duzgun, B., Computer Engineering Gebze Technical University, Kocaeli, Turkey; Cayir, A., Huawei R&d Center, Istanbul, Turkey; Dag, H., Management Information Systems Kadir Has University, Istanbul, Turkeyen_US
dc.description7th International Conference on Computer Science and Engineering, UBMK 2022 --14 September 2022 through 16 September 2022 -- --183844en_US
dc.description.abstractNowadays, malware and malware incidents are increasing daily, even with various antivirus systems and malware detection or classification methodologies. Machine learning techniques have been the main focus of the security experts to detect malware and determine their families. Many static, dynamic, and hybrid techniques have been presented for that purpose. In this study, the static analysis technique has been applied to malware samples to extract API calls, which is one of the most used features in machine/deep learning models as it represents the behavior of malware samples. Since the rapid increase and continuous evolution of malware affect the detection capacity of antivirus scanners, recent and updated datasets of malicious software became necessary to overcome this drawback. This paper introduces two new datasets: One with 14,616 samples obtained and compiled from VirusShare and one with 9,795 samples from VirusSample. In addition, benchmark results based on static API calls of malware samples are presented using several machine and deep learning models on these datasets. We believe that these two datasets and benchmark results enable researchers to test and validate their methods and approaches in this field. © 2022 IEEE.en_US
dc.description.sponsorshipTürkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK: 118E400en_US
dc.description.sponsorshipACKNOWLEDGMENT This work is supported by The Scientific and Technological Research Council of Turkey under the grant number 118E400.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/UBMK55850.2022.9919580en_US
dc.identifier.endpage141en_US
dc.identifier.isbn9781665470100
dc.identifier.scopus2-s2.0-85141884823en_US
dc.identifier.startpage137en_US
dc.identifier.urihttps://doi.org/10.1109/UBMK55850.2022.9919580
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4975
dc.institutionauthorDemirkıran, Ferhat
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofProceedings - 7th International Conference on Computer Science and Engineering, UBMK 2022en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAPI callen_US
dc.subjectdataseten_US
dc.subjectdeep learningen_US
dc.subjectmachine learningen_US
dc.subjectMalwareen_US
dc.subjectClassification (of information)en_US
dc.subjectDeep learningen_US
dc.subjectLearning systemsen_US
dc.subjectMalwareen_US
dc.subjectAnti-virus systemsen_US
dc.subjectAPI callsen_US
dc.subjectDataseten_US
dc.subjectDeep learningen_US
dc.subjectLearning modelsen_US
dc.subjectMachine-learningen_US
dc.subjectMalware classificationsen_US
dc.subjectMalware detectionen_US
dc.subjectMalware familiesen_US
dc.subjectMalwaresen_US
dc.subjectStatic analysisen_US
dc.titleBenchmark Static Api Call Datasets for Malware Family Classificationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication695a8adc-2330-4d32-ab37-8b781716d609
relation.isAuthorOfPublication.latestForDiscovery695a8adc-2330-4d32-ab37-8b781716d609

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4975.pdf
Size:
392.58 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text