Extrapolating Continuous Color Emotions Through Deep Learning

dc.contributor.author Ram,V.
dc.contributor.author Schaposnik,L.P.
dc.contributor.author Konstantinou,N.
dc.contributor.author Volkan,E.
dc.contributor.author Papadatou-Pastou,M.
dc.contributor.author Manav,B.
dc.contributor.author Mohr,C.
dc.contributor.other Interior Architecture and Environmental Design
dc.contributor.other 06. Faculty of Art and Design
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-10-15T19:42:03Z
dc.date.available 2024-10-15T19:42:03Z
dc.date.issued 2020
dc.description.abstract By means of an experimental dataset, we use deep learning to implement an RGB (red, green, and blue) extrapolation of emotions associated to color, and do a mathematical study of the results obtained through this neural network. In particular, we see that males (type-m individuals) typically associate a given emotion with darker colors, while females (type-f individuals) associate it with brighter colors. A similar trend was observed with older people and associations to lighter colors. Moreover, through our classification matrix, we identify which colors have weak associations to emotions and which colors are typically confused with other colors. © 2020 authors. Published by the American Physical Society. en_US
dc.description.sponsorship Directorate for Mathematical and Physical Sciences, MPS, (1749013) en_US
dc.identifier.citationcount 7
dc.identifier.doi 10.1103/PhysRevResearch.2.033350
dc.identifier.issn 2643-1564
dc.identifier.scopus 2-s2.0-85113520218
dc.identifier.uri https://doi.org/10.1103/PhysRevResearch.2.033350
dc.identifier.uri https://hdl.handle.net/20.500.12469/6512
dc.language.iso en en_US
dc.publisher American Physical Society en_US
dc.relation.ispartof Physical Review Research en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject [No Keyword Available] en_US
dc.title Extrapolating Continuous Color Emotions Through Deep Learning en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.institutional Manav, Banu
gdc.author.scopusid 57221150141
gdc.author.scopusid 55652378300
gdc.author.scopusid 55927872000
gdc.author.scopusid 57192306774
gdc.author.scopusid 18537242000
gdc.author.scopusid 7801349425
gdc.author.scopusid 56426551700
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Ram V., Milton High School, Milton, 30004, GA, United States; Schaposnik L.P., Department of Mathematics, Statistics and Computer Science, University of Illinois, Chicago, 60607, IL, United States; Konstantinou N., Department of Rehabilitation Sciences, Faculty of Health Sciences, Cyprus University of Technology, Limassol, 3036, Cyprus; Volkan E., Department of Psychology, Cyprus International University, Nicosia, 99258, Cyprus; Papadatou-Pastou M., National and Kapodistrian University of Athens, Athens, 157 72, Greece; Manav B., Kadir Has University, Faculty of Art and Design, Department of Interior Architecture and Environmental Design, Kadir Has Caddesi, Cibali-İstanbul, 34083, Turkey; Jonauskaite D., Institute of Psychology, University of Lausanne, Lausanne, 1015, Switzerland; Mohr C., Institute of Psychology, University of Lausanne, Lausanne, 1015, Switzerland en_US
gdc.description.issue 3 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 2 en_US
gdc.identifier.openalex W3101842064
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 2.8450529E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Computer and Information Sciences
gdc.oaire.keywords Computer Science - Machine Learning
gdc.oaire.keywords QC1-999
gdc.oaire.keywords FOS: Physical sciences
gdc.oaire.keywords Associations
gdc.oaire.keywords Quantitative Biology - Quantitative Methods
gdc.oaire.keywords Machine Learning (cs.LG)
gdc.oaire.keywords Age
gdc.oaire.keywords colour; emotion; machine learning; neural network
gdc.oaire.keywords Biological Physics
gdc.oaire.keywords Preferences
gdc.oaire.keywords Quantitative Methods
gdc.oaire.keywords Physics - Biological Physics
gdc.oaire.keywords Quantitative Methods (q-bio.QM)
gdc.oaire.keywords Physics
gdc.oaire.keywords Deep learning
gdc.oaire.keywords Neural network
gdc.oaire.keywords Quantitative Biology
gdc.oaire.keywords Biological Physics (physics.bio-ph)
gdc.oaire.keywords FOS: Biological sciences
gdc.oaire.keywords Computer Science
gdc.oaire.keywords Natural Sciences
gdc.oaire.popularity 7.2990725E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0501 psychology and cognitive sciences
gdc.oaire.sciencefields 05 social sciences
gdc.openalex.fwci 1.444
gdc.openalex.normalizedpercentile 0.8
gdc.opencitations.count 9
gdc.plumx.mendeley 18
gdc.plumx.newscount 1
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
relation.isAuthorOfPublication d11f6424-2d69-45f8-9d15-5faa04038be1
relation.isAuthorOfPublication.latestForDiscovery d11f6424-2d69-45f8-9d15-5faa04038be1
relation.isOrgUnitOfPublication 0a9f6edd-770d-4882-af28-4100f62c19f0
relation.isOrgUnitOfPublication 8fe856d9-ed4d-45d5-8d18-d900eb9c3bff
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 0a9f6edd-770d-4882-af28-4100f62c19f0

Files