Block Elimination Distance

dc.contributor.author Diner, Ö.Y.
dc.contributor.author Giannopoulou, A.C.
dc.contributor.author Stamoulis, G.
dc.contributor.author Thilikos, D.M.
dc.date.accessioned 2023-10-19T15:05:14Z
dc.date.available 2023-10-19T15:05:14Z
dc.date.issued 2021
dc.description 47th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2021 --23 June 2021 through 25 June 2021 -- --265739 en_US
dc.description.abstract We introduce the parameter of block elimination distance as a measure of how close a graph is to some particular graph class. Formally, given a graph class G, the class B(G) contains all graphs whose blocks belong to G and the class A(G) contains all graphs where the removal of a vertex creates a graph in G. Given a hereditary graph class G, we recursively define G( k ) so that G(0 )= B(G) and, if k? 1, G( k )= B(A(G( k - 1 )) ). The block elimination distance of a graph G to a graph class G is the minimum k such that G? G( k ) and can be seen as an analog of the elimination distance parameter, defined in [J. Bulian & A. Dawar. Algorithmica, 75(2):363–382, 2016], with the difference that connectivity is now replaced by biconnectivity. We show that, for every non-trivial hereditary class G, the problem of deciding whether G? G( k ) is NP-complete. We focus on the case where G is minor-closed and we study the minor obstruction set of G( k ) i.e., the minor-minimal graphs not in G( k ). We prove that the size of the obstructions of G( k ) is upper bounded by some explicit function of k and the maximum size of a minor obstruction of G. This implies that the problem of deciding whether G? G( k ) is constructively fixed parameter tractable, when parameterized by k. Our results are based on a structural characterization of the obstructions of B(G), relatively to the obstructions of G. Finally, we give two graph operations that generate members of G( k ) from members of G( k - 1 ) and we prove that this set of operations is complete for the class O of outerplanar graphs. This yields the identification of all members O? G( k ), for every k? N and every non-trivial minor-closed graph class G. © 2021, Springer Nature Switzerland AG. en_US
dc.description.sponsorship ANR-17-CE23-0010; ANR-20-CE92-0027; Deutsche Forschungsgemeinschaft, DFG; Agencia Estatal de Investigación, AEI: ANR-16-CE40-0028, MTM2017-82166-P en_US
dc.description.sponsorship The first author was supported by the Spanish Agencia Estatal de Investigacion project MTM2017-82166-P. The two last authors were supported by the ANR projects DEMO-GRAPH(ANR-16-CE40-0028), ESIGMA(ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027). en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1007/978-3-030-86838-3_3 en_US
dc.identifier.isbn 9783030868376
dc.identifier.issn 0302-9743
dc.identifier.issn 0911-0119
dc.identifier.issn 1435-5914
dc.identifier.scopus 2-s2.0-85115834535 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-86838-3_3
dc.identifier.uri https://hdl.handle.net/20.500.12469/4757
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Biconnected graphs en_US
dc.subject Elimination distance en_US
dc.subject Graph minors en_US
dc.subject Obstructions en_US
dc.subject Parameterized algorithms en_US
dc.subject Graph theory en_US
dc.subject Parameter estimation en_US
dc.subject Biconnected graph en_US
dc.subject Class A en_US
dc.subject Class B en_US
dc.subject Class G en_US
dc.subject Elimination distance en_US
dc.subject Graph class en_US
dc.subject Graph minors en_US
dc.subject Non-trivial en_US
dc.subject Obstruction en_US
dc.subject Parameterized algorithm en_US
dc.subject Graphic methods en_US
dc.title Block Elimination Distance en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Yaşar Diner, Öznur
gdc.author.scopusid 55630908700
gdc.author.scopusid 28567696800
gdc.author.scopusid 57211456418
gdc.author.scopusid 57209875979
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.departmenttemp Diner, Ö.Y., Computer Engineering Department, Kadir Has University, Istanbul, Turkey, Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain; Giannopoulou, A.C., Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece; Stamoulis, G., Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece, LIRMM, Univ Montpellier, Montpellier, France; Thilikos, D.M., LIRMM, Univ Montpellier, CNRS, Montpellier, France en_US
gdc.description.endpage 38 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 28 en_US
gdc.description.volume 12911 LNCS en_US
gdc.identifier.openalex W3202572989
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.8196019E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Elimination distance
gdc.oaire.keywords Obstructions
gdc.oaire.keywords 05C75, 05C83, 05C75, 05C69
gdc.oaire.keywords Block elimination distance
gdc.oaire.keywords G.2.2
gdc.oaire.keywords Graph class
gdc.oaire.keywords Parameterized algorithms
gdc.oaire.keywords Non-trivial
gdc.oaire.keywords Minor obstructions
gdc.oaire.keywords Obstruction
gdc.oaire.keywords Computer Science - Data Structures and Algorithms
gdc.oaire.keywords Parameter estimation
gdc.oaire.keywords Mathematics - Combinatorics
gdc.oaire.keywords Biconnected graph
gdc.oaire.keywords Biconnected graphs
gdc.oaire.keywords Graph minors
gdc.oaire.keywords Graph theory
gdc.oaire.keywords Graphic methods
gdc.oaire.keywords Parameterized algorithm
gdc.oaire.keywords Class B
gdc.oaire.keywords Class A
gdc.oaire.keywords F.2.2
gdc.oaire.keywords Class G
gdc.oaire.keywords Computer Science - Discrete Mathematics
gdc.oaire.popularity 5.6458687E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.fwci 1.045
gdc.openalex.normalizedpercentile 0.57
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.scopuscites 1
gdc.scopus.citedcount 1
relation.isAuthorOfPublication 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4757.pdf
Size:
745.98 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text