Block Elimination Distance

dc.authorscopusid 55630908700
dc.authorscopusid 28567696800
dc.authorscopusid 57211456418
dc.authorscopusid 57209875979
dc.contributor.author Diner, Ö.Y.
dc.contributor.author Yaşar Diner, Öznur
dc.contributor.author Giannopoulou, A.C.
dc.contributor.author Stamoulis, G.
dc.contributor.author Thilikos, D.M.
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:05:14Z
dc.date.available 2023-10-19T15:05:14Z
dc.date.issued 2021
dc.department-temp Diner, Ö.Y., Computer Engineering Department, Kadir Has University, Istanbul, Turkey, Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain; Giannopoulou, A.C., Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece; Stamoulis, G., Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece, LIRMM, Univ Montpellier, Montpellier, France; Thilikos, D.M., LIRMM, Univ Montpellier, CNRS, Montpellier, France en_US
dc.description 47th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2021 --23 June 2021 through 25 June 2021 -- --265739 en_US
dc.description.abstract We introduce the parameter of block elimination distance as a measure of how close a graph is to some particular graph class. Formally, given a graph class G, the class B(G) contains all graphs whose blocks belong to G and the class A(G) contains all graphs where the removal of a vertex creates a graph in G. Given a hereditary graph class G, we recursively define G( k ) so that G(0 )= B(G) and, if k? 1, G( k )= B(A(G( k - 1 )) ). The block elimination distance of a graph G to a graph class G is the minimum k such that G? G( k ) and can be seen as an analog of the elimination distance parameter, defined in [J. Bulian & A. Dawar. Algorithmica, 75(2):363–382, 2016], with the difference that connectivity is now replaced by biconnectivity. We show that, for every non-trivial hereditary class G, the problem of deciding whether G? G( k ) is NP-complete. We focus on the case where G is minor-closed and we study the minor obstruction set of G( k ) i.e., the minor-minimal graphs not in G( k ). We prove that the size of the obstructions of G( k ) is upper bounded by some explicit function of k and the maximum size of a minor obstruction of G. This implies that the problem of deciding whether G? G( k ) is constructively fixed parameter tractable, when parameterized by k. Our results are based on a structural characterization of the obstructions of B(G), relatively to the obstructions of G. Finally, we give two graph operations that generate members of G( k ) from members of G( k - 1 ) and we prove that this set of operations is complete for the class O of outerplanar graphs. This yields the identification of all members O? G( k ), for every k? N and every non-trivial minor-closed graph class G. © 2021, Springer Nature Switzerland AG. en_US
dc.description.sponsorship ANR-17-CE23-0010; ANR-20-CE92-0027; Deutsche Forschungsgemeinschaft, DFG; Agencia Estatal de Investigación, AEI: ANR-16-CE40-0028, MTM2017-82166-P en_US
dc.description.sponsorship The first author was supported by the Spanish Agencia Estatal de Investigacion project MTM2017-82166-P. The two last authors were supported by the ANR projects DEMO-GRAPH(ANR-16-CE40-0028), ESIGMA(ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027). en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1007/978-3-030-86838-3_3 en_US
dc.identifier.endpage 38 en_US
dc.identifier.isbn 9783030868376
dc.identifier.issn 0302-9743
dc.identifier.scopus 2-s2.0-85115834535 en_US
dc.identifier.scopusquality Q2
dc.identifier.startpage 28 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-030-86838-3_3
dc.identifier.uri https://hdl.handle.net/20.500.12469/4757
dc.identifier.volume 12911 LNCS en_US
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Springer Science and Business Media Deutschland GmbH en_US
dc.relation.ispartof Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 1
dc.subject Biconnected graphs en_US
dc.subject Elimination distance en_US
dc.subject Graph minors en_US
dc.subject Obstructions en_US
dc.subject Parameterized algorithms en_US
dc.subject Graph theory en_US
dc.subject Parameter estimation en_US
dc.subject Biconnected graph en_US
dc.subject Class A en_US
dc.subject Class B en_US
dc.subject Class G en_US
dc.subject Elimination distance en_US
dc.subject Graph class en_US
dc.subject Graph minors en_US
dc.subject Non-trivial en_US
dc.subject Obstruction en_US
dc.subject Parameterized algorithm en_US
dc.subject Graphic methods en_US
dc.title Block Elimination Distance en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4757.pdf
Size:
745.98 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text