Block Elimination Distance

dc.authorscopusid55630908700
dc.authorscopusid28567696800
dc.authorscopusid57211456418
dc.authorscopusid57209875979
dc.contributor.authorDiner, Ö.Y.
dc.contributor.authorGiannopoulou, A.C.
dc.contributor.authorStamoulis, G.
dc.contributor.authorThilikos, D.M.
dc.date.accessioned2023-10-19T15:05:14Z
dc.date.available2023-10-19T15:05:14Z
dc.date.issued2021
dc.department-tempDiner, Ö.Y., Computer Engineering Department, Kadir Has University, Istanbul, Turkey, Department of Mathematics, Universitat Politècnica de Catalunya, Barcelona, Spain; Giannopoulou, A.C., Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece; Stamoulis, G., Department of Informatics and Telecommunications, National and Kapodistrian University of Athens, Athens, Greece, LIRMM, Univ Montpellier, Montpellier, France; Thilikos, D.M., LIRMM, Univ Montpellier, CNRS, Montpellier, Franceen_US
dc.description47th International Workshop on Graph-Theoretic Concepts in Computer Science, WG 2021 --23 June 2021 through 25 June 2021 -- --265739en_US
dc.description.abstractWe introduce the parameter of block elimination distance as a measure of how close a graph is to some particular graph class. Formally, given a graph class G, the class B(G) contains all graphs whose blocks belong to G and the class A(G) contains all graphs where the removal of a vertex creates a graph in G. Given a hereditary graph class G, we recursively define G( k ) so that G(0 )= B(G) and, if k? 1, G( k )= B(A(G( k - 1 )) ). The block elimination distance of a graph G to a graph class G is the minimum k such that G? G( k ) and can be seen as an analog of the elimination distance parameter, defined in [J. Bulian & A. Dawar. Algorithmica, 75(2):363–382, 2016], with the difference that connectivity is now replaced by biconnectivity. We show that, for every non-trivial hereditary class G, the problem of deciding whether G? G( k ) is NP-complete. We focus on the case where G is minor-closed and we study the minor obstruction set of G( k ) i.e., the minor-minimal graphs not in G( k ). We prove that the size of the obstructions of G( k ) is upper bounded by some explicit function of k and the maximum size of a minor obstruction of G. This implies that the problem of deciding whether G? G( k ) is constructively fixed parameter tractable, when parameterized by k. Our results are based on a structural characterization of the obstructions of B(G), relatively to the obstructions of G. Finally, we give two graph operations that generate members of G( k ) from members of G( k - 1 ) and we prove that this set of operations is complete for the class O of outerplanar graphs. This yields the identification of all members O? G( k ), for every k? N and every non-trivial minor-closed graph class G. © 2021, Springer Nature Switzerland AG.en_US
dc.description.sponsorshipANR-17-CE23-0010; ANR-20-CE92-0027; Deutsche Forschungsgemeinschaft, DFG; Agencia Estatal de Investigación, AEI: ANR-16-CE40-0028, MTM2017-82166-Pen_US
dc.description.sponsorshipThe first author was supported by the Spanish Agencia Estatal de Investigacion project MTM2017-82166-P. The two last authors were supported by the ANR projects DEMO-GRAPH(ANR-16-CE40-0028), ESIGMA(ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027).en_US
dc.identifier.citation1
dc.identifier.doi10.1007/978-3-030-86838-3_3en_US
dc.identifier.endpage38en_US
dc.identifier.isbn9783030868376
dc.identifier.issn0302-9743
dc.identifier.scopus2-s2.0-85115834535en_US
dc.identifier.scopusqualityQ2
dc.identifier.startpage28en_US
dc.identifier.urihttps://doi.org/10.1007/978-3-030-86838-3_3
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4757
dc.identifier.volume12911 LNCSen_US
dc.institutionauthorYaşar Diner, Öznur
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherSpringer Science and Business Media Deutschland GmbHen_US
dc.relation.ispartofLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectBiconnected graphsen_US
dc.subjectElimination distanceen_US
dc.subjectGraph minorsen_US
dc.subjectObstructionsen_US
dc.subjectParameterized algorithmsen_US
dc.subjectGraph theoryen_US
dc.subjectParameter estimationen_US
dc.subjectBiconnected graphen_US
dc.subjectClass Aen_US
dc.subjectClass Ben_US
dc.subjectClass Gen_US
dc.subjectElimination distanceen_US
dc.subjectGraph classen_US
dc.subjectGraph minorsen_US
dc.subjectNon-trivialen_US
dc.subjectObstructionen_US
dc.subjectParameterized algorithmen_US
dc.subjectGraphic methodsen_US
dc.titleBlock Elimination Distanceen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery84ac79d3-823a-4abf-9b15-e1383ec8a9f5

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
4757.pdf
Size:
745.98 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text