Counterfactual Reconciliation: Incorporating Aggregation Constraints for More Accurate Causal Effect Estimates

dc.authoridTekguc, Hasan/0000-0002-3902-4486
dc.authorwosidTekguc, Hasan/C-9910-2019
dc.contributor.authorCengiz, Doruk
dc.contributor.authorTekgüç, Hasan
dc.contributor.authorTekguc, Hasan
dc.date.accessioned2024-10-15T19:40:46Z
dc.date.available2024-10-15T19:40:46Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-temp[Cengiz, Doruk] Home Depot, Atlanta, GA 30339 USA; [Tekguc, Hasan] Kadir Has Univ, Istanbul, Turkiyeen_US
dc.descriptionTekguc, Hasan/0000-0002-3902-4486en_US
dc.description.abstractWe extend the scope of the forecast reconciliation literature and use its tools in the context of causal inference. Researchers are interested in both the average treatment effect on the treated and treatment effect heterogeneity. We show that ex post correction of the counterfactual estimates using the aggregation constraints that stem from the hierarchical or grouped structure of the data is likely to yield more accurate estimates. Building on the geometric interpretation of forecast reconciliation, we provide additional insights into the exact factors determining the size of the accuracy improvement due to the reconciliation. We experiment with U.S. GDP and employment data. We find that the reconciled treatment effect estimates tend to be closer to the truth than the original (base) counterfactual estimates even in cases where the aggregation constraints are non-linear. Consistent with our theoretical expectations, improvement is greater when machine learning methods are used. (c) 2022 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.en_US
dc.description.woscitationindexSocial Science Citation Index
dc.identifier.citationcount0
dc.identifier.doi10.1016/j.ijforecast.2022.08.011
dc.identifier.endpage580en_US
dc.identifier.issn0169-2070
dc.identifier.issn1872-8200
dc.identifier.issue2en_US
dc.identifier.scopusqualityQ1
dc.identifier.startpage564en_US
dc.identifier.urihttps://doi.org/10.1016/j.ijforecast.2022.08.011
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6390
dc.identifier.volume40en_US
dc.identifier.wosWOS:001201887600001
dc.identifier.wosqualityQ1
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectForecast reconciliationen_US
dc.subjectNon-linear constraintsen_US
dc.subjectCausal machine learning methodsen_US
dc.subjectCounterfactual estimationen_US
dc.subjectDifference-in-differencesen_US
dc.titleCounterfactual Reconciliation: Incorporating Aggregation Constraints for More Accurate Causal Effect Estimatesen_US
dc.typeArticleen_US
dc.wos.citedbyCount0
dspace.entity.typePublication
relation.isAuthorOfPublication65b30906-4ef5-49b1-a10e-f86c44eb7b0d
relation.isAuthorOfPublication.latestForDiscovery65b30906-4ef5-49b1-a10e-f86c44eb7b0d

Files