Courier Payout Cash-Flow Prediction in Crowdsourced E-Commerce Logistics: a Hybrid Machine Learning Approach

dc.authorscopusid 59377586400
dc.authorscopusid 57217492549
dc.authorscopusid 58824446500
dc.authorscopusid 22949783700
dc.contributor.author Cay, Ahmet
dc.contributor.author Kup, Eyup Tolunay
dc.contributor.author Bayram, Baris
dc.contributor.author Ciltik, Ali
dc.date.accessioned 2024-11-15T17:48:59Z
dc.date.available 2024-11-15T17:48:59Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp [Cay, Ahmet; Kup, Eyup Tolunay; Bayram, Baris; Ciltik, Ali] HepsiJet, Istanbul, Turkiye; [Kup, Eyup Tolunay] Kadir Has Univ, Istanbul, Turkiye; [Cay, Ahmet] Tech Univ Munich, Munich, Germany en_US
dc.description.abstract In the rapidly growing sector of crowdsourced e-commerce logistics, where delivery volumes are highly variable, the effective management of courier payouts becomes essential to maintain operational efficiency. This paper introduces a comprehensive hybrid approach, blending clustering methods with multiple advanced regression models, to accurately predict daily courier payout cash-flows. By utilizing real-world data from e-commerce operations, our methodology estimates the daily financial outflows for courier payments, a critical component for adapting to the dynamic and unpredictable nature of crowdsourced logistics. Our approach includes a thorough comparative analysis of several stateof- the-art regression models - namely, XGBoost Regressor, LightGBM Regressor, and Facebook's PROPHET - in conjunction with clustering techniques that categorize similar cross-docks based on distinct characteristics. This integrated, hybrid strategy aims to provide precise daily financial predictions for each cross-dock, which is crucial for robust financial planning and effective resource allocation. The practical implications of this research are significant, offering logistics companies a powerful tool to navigate the complexities of e-commerce environments. By ensuring more accurate cash-flow predictions, companies can optimize their operations, reduce financial uncertainties, and improve overall service quality in the highly competitive and fast-paced world of e-commerce logistics. en_US
dc.description.sponsorship Türkiye Bilimsel ve Teknolojik Araştırma Kurumu, TÜBİTAK en_US
dc.description.sponsorship TUBITAK; HepsiJet en_US
dc.description.sponsorship Supported by TUBITAK and HepsiJet. en_US
dc.description.woscitationindex Conference Proceedings Citation Index - Science
dc.identifier.citationcount 0
dc.identifier.doi 10.1007/978-3-031-67195-1_25
dc.identifier.endpage 207 en_US
dc.identifier.isbn 9783031671944
dc.identifier.isbn 9783031671951
dc.identifier.issn 2367-3370
dc.identifier.issn 2367-3389
dc.identifier.scopus 2-s2.0-85206992927
dc.identifier.scopusquality Q4
dc.identifier.startpage 195 en_US
dc.identifier.uri https://doi.org/10.1007/978-3-031-67195-1_25
dc.identifier.volume 1089 en_US
dc.identifier.wos WOS:001329232000025
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Springer international Publishing Ag en_US
dc.relation.ispartof International Conference on Intelligent and Fuzzy Systems (INFUS) -- JUL 16-18, 2024 -- Istanbul Tech Univ, Canakkale, TURKEY en_US
dc.relation.ispartofseries Lecture Notes in Networks and Systems
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 1
dc.subject E-Commerce Logistics en_US
dc.subject Crowdsourcing en_US
dc.subject Payout Prediction en_US
dc.subject Regression en_US
dc.subject Clustering en_US
dc.subject XGBoost en_US
dc.subject LightGBM en_US
dc.subject Prophet en_US
dc.subject Machine Learning en_US
dc.title Courier Payout Cash-Flow Prediction in Crowdsourced E-Commerce Logistics: a Hybrid Machine Learning Approach en_US
dc.type Conference Object en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication

Files