Anomaly Detection in Walking Trajectory
dc.contributor.author | Öğrenci, Arif Selçuk | |
dc.date.accessioned | 2020-12-20T20:17:01Z | |
dc.date.available | 2020-12-20T20:17:01Z | |
dc.date.issued | 2018 | |
dc.department | Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Elektrik-Elektronik Mühendisliği Bölümü | en_US |
dc.description.abstract | Analysis of the walking trajectory and the detection of anomalies in this trajectory, provide important benefits in the fields of health and security. In this work, two methods to detect anomalies in trajectories, are compared. Firstly, an unsupervised method is used where the conformance among trajectories are taken into consideration. Trajectories that deviate from others are qualified as anomalies. Secondly, the points in the trajectories are considered as a time series. Artifical neural networks performing supervised learning based on the backpropagation algorithm are used. The results are compared, and the points to be enhanced are highlighted. | en_US |
dc.identifier.citation | 1 | |
dc.identifier.isbn | 978-1-5386-1501-0 | |
dc.identifier.issn | 2165-0608 | en_US |
dc.identifier.issn | 2165-0608 | |
dc.identifier.scopusquality | N/A | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/3616 | |
dc.identifier.wos | WOS:000511448500650 | en_US |
dc.identifier.wosquality | N/A | |
dc.institutionauthor | Öǧrenci, Arif Selçuk | en_US |
dc.language.iso | tr | en_US |
dc.publisher | IEEE | en_US |
dc.relation.journal | 2018 26th Signal Processing And Communications Applications Conference (Siu) | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Anomaly detection | en_US |
dc.subject | Trajectory | en_US |
dc.subject | Conformal prediction | en_US |
dc.subject | Artifical neural networks | en_US |
dc.title | Anomaly Detection in Walking Trajectory | en_US |
dc.type | Conference Object | en_US |
dspace.entity.type | Publication |