Browsing by Author "Altunoglu, Yasemin Celik"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation Count: 2Evaluation of the Potential Therapeutic Properties of Liquidambar orientalis Oil(Wiley-v C H verlag Gmbh, 2023) Baloglu, Mehmet Cengiz; Yildiz Ozer, Lutfiye; Pirci, Buket; Zengin, Gokhan; Uba, Abdullahi Ibrahim; Altunoglu, Yasemin CelikLiquidambar orientalis Mill., commonly called the Anatolian sweetgum or Sigla tree, is endemic to southwestern Turkey. It has been historically significant in traditional medicine. In our research, we delved into the therapeutic attributes of its oil, emphasizing its antioxidant, antimicrobial, and antitumor properties. The primary chemical constituent of the gum is styrene, accounting for 78.5 %. The gum demonstrated antioxidant capabilities in several assays, including in 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2 '-azinobis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), cupric reducing antioxidant capacity (CUPRAC) and ferric reducing antioxidant power (FRAP). It displayed bactericidal actions against various gram-positive bacteria, such as Staphylococcus aureus, and gram-negative strains, including Escherichia coli. Additionally, the oil showcased potent antitumor effects against breast (MDA-MB-231), lung (A549), and prostate (PC3) cancer cell lines. These effects were found to be both time- and dose-dependent. L. orientalis Mill. oil showed the best antitumor activity against breast, lung, and prostate cancer cell lines after the 24 h and 48 h treatment. Its oil might induce autophagy in the PC3 prostate cancer cell line, whereas its cytotoxicity against MDA-MB-231 and A549 cancer cell lines might not be correlated with autophagy or apoptosis pathways. In conclusion, the oil from the Sigla tree offers promising therapeutic potential and warrants further exploration.Article Citation Count: 8Integration of in vitro and in silico approaches to assess three Astragalus species from Turkey flora: A novel spotlight from lab bench to functional applications(Elsevier, 2022) Zengin, Gokhan; Uba, Abdullahi Ibrahim; Ocal, Mustafa; Sharifi-Rad, Majid; Caprioli, Giovanni; Angeloni, Simone; Altunoglu, Yasemin CelikMembers of the genus Astragalus have a great interest as a source of natural bioactive compounds on a scientific platform. To provide multidirectional insights into three Astragalus species (A. setulosus, A. anthylloides, and A. ovalis), the current work focused on the chemical characterization and biological properties of their extracts (aerial parts and roots). The chemical characterization of the extracts was detected by HPLC-MS/MS analysis. The biological properties were evaluated by antioxidant, enzyme inhibitory, and cytotoxic parameters. Assays for radical quenching, reducing capacity, and metal chelation were also used to evaluate antioxidant properties. To test the enzyme inhibitory effects of the extracts, cholinesterases, tyrosinase, alpha-amylase, and alpha-glucosidase were utilized as target enzymes. Two cancer cell lines, (MCF-7 (human breast cancer cell line) and HeLa (Human cervix cancer cell line), were selected to evaluate cytotoxic effects. Generally, 5- caffeoylquinic acid (2.43-283.92 mu g/g extract), hyperoside (4.33-216.22 mu g/g extract) and rutin (1.09-184.98 mu g/g extract) were the main constituents. The extracts from aerial parts and roots of A. anthylloides showed stronger radical scavenging and reducing power abilities compared to A. setulosus and A. ovalis. The best AChE and BChE inhibitory effects were determined in the aerial parts of A. setulosus (2.18 mg GALAE/g) and mots of A. ovalis (4.76 mg GALAE/g), respectively. The extracts of A. ovalis had the highest tyrosinase inhibitory abilities. The extract from aerial parts of A. setulosus showed stronger cytotoxic effects compared to other extracts. Pearson's correlation analysis revealed that the presence of some compounds (resveratrol, p-coumaric, 5-caffeoylquinic, and ferulic acids, etc) was linked to the observed biological activities. Molecular docking was also provided for the possible interaction of enzymes as well as protein targets of the tested cell lines. Our findings provide a scientific basis for the Astragalus species, which may serve as a source of naturally occurring bioactive compounds for health-promoting applications.