Browsing by Author "Darici, M.B."
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Conference Object Citation Count: 0Age Classification by Wgan Brain Mr Image Augmentation(Institute of Electrical and Electronics Engineers Inc., 2024) Yaman, B.; Yilmaz, O.Z.; Darici, M.B.; Ozmen, A.Medical image augmentation plays a crucial role in enhancing the performance of Artificial Intelligence (AI) applications in medical sciences. Augmenting medical images is important for solving data scarcity, increasing data diversity, enhancing robustness and reliability of model and improving training and test results that can be done in medical sciences. In this work we show that Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP) can be used for increasing the performance of data classification. To achieve that, we have augmented healthy brain MR images by using WGAN and updated the dataset. The results give that when dataset augmented by WGAN-GP is used as input for CNN-based model to solve age classification problem, accuracy of this model increases to 98,37% from 95,14%. It can be concluded that the purposed WGAN-based brain MR image augmentation method enhances the performance of image classification. © 2024 IEEE.Article Citation Count: 1A Comparative Study on Denoising From Facial Images Using Convolutional Autoencoder(Gazi Universitesi, 2023) Darici, M.B.; Erdem, Z.Denoising is one of the most important preprocesses in image processing. Noises in images can prevent extracting some important information stored in images. Therefore, before some implementations such as image classification, segmentation, etc., image denoising is a necessity to obtain good results. The purpose of this study is to compare the deep learning techniques and traditional techniques on denoising facial images considering two different types of noise (Gaussian and Salt&Pepper). Gaussian, Median, and Mean filters have been specified as traditional methods. For deep learning methods, deep convolutional denoising autoencoders (CDAE) structured on three different optimizers have been proposed. Both accuracy metrics and computational times have been considered to evaluate the denoising performance of proposed autoencoders, and traditional methods. The utilized standard evaluation metrics are the peak signal to noise ratio (PSNR) and structural similarity index measure (SSIM). It has been observed that overall, while the traditional methods gave results in shorter times in terms of computation times, the autoencoders performed better concerning the evaluation metrics. The CDAE based on the Adam optimizer has been shown the best results in terms of PSNR and SSIM metrics on removing both types of noise. © 2023, Gazi Universitesi. All rights reserved.