Browsing by Author "Okamura, Allison M."
Now showing 1 - 5 of 5
- Results Per Page
- Sort Options
Conference Object Citation Count: 2Haptic Feedback Relocation From the Fingertips To the Wrist for Two-Finger Manipulation in Virtual Reality(IEEE, 2022) Palmer, Jasmin E.; Sarac, Mine; Garza, Aaron A.; Okamura, Allison M.Relocation of haptic feedback from the fingertips to the wrist has been considered as a way to enable haptic interaction with mixed reality virtual environments while leaving the fingers free for other tasks. We present a pair of wrist-worn tactile haptic devices and a virtual environment to study how various mappings between fingers and tactors affect task performance. The haptic feedback rendered to the wrist reflects the interaction forces occurring between a virtual object and virtual avatars controlled by the index finger and thumb. We performed a user study comparing four different finger-totactor haptic feedback mappings and one no-feedback condition as a control. We evaluated users' ability to perform a simple pick-and-place task via the metrics of task completion time, path length of the fingers and virtual cube, and magnitudes of normal and shear forces at the fingertips. We found that multiple mappings were effective, and there was a greater impact when visual cues were limited. We discuss the limitations of our approach and describe next steps toward multi-degreeof-freedom haptic rendering for wrist-worn devices to improve task performance in virtual environments.Article Citation Count: 6Perceived Intensities of Normal and Shear Skin Stimuli Using a Wearable Haptic Bracelet(IEEE-Inst Electrical Electronics Engineers Inc, 2022) Sarac, Mine; Huh, Tae Myung; Choi, Hojung; Cutkosky, Mark R.; Di Luca, Massimiliano; Okamura, Allison M.Our aim is to provide effective interaction with virtual objects, despite the lack of co-location of virtual and real-world contacts, while taking advantage of relatively large skin area and ease of mounting on the forearm. We performed two human participant studies to determine the effects of haptic feedback in the normal and shear directions during virtual manipulation using haptic devices worn near the wrist. In the first study, participants performed significantly better while discriminating stiffness values of virtual objects when the feedback consisted of normal displacements compared to shear displacements. Participants also commented that they could detect normal cues much easier than shear, which motivated us to perform a second study to find the point of subjective equality (PSE) between normal and shear stimuli. Our results show that shear stimuli require a larger actuator displacement but less force than normal stimuli to achieve perceptual equality for our haptic bracelets. We found that normal and shear stimuli cannot be equalized through skin displacement nor the interaction forces across all users. Rather, a calibration method is needed to find the point of equality for each user where normal and shear stimuli create the same intensity on the user's skin.Conference Object Citation Count: 1Perception of Mechanical Properties Via Wrist Haptics: Effects of Feedback Congruence(IEEE, 2022) Sarac, Mine; Di Luca, Massimiliano; Okamura, Allison M.Despite non-co-location, haptic stimulation at the wrist can potentially provide feedback regarding interactions at the fingertips without encumbering the user's hand. Here we investigate how two types of skin deformation at the wrist (normal and shear) relate to the perception of the mechanical properties of virtual objects. We hypothesized that a congruent mapping (i.e. when the most relevant interaction forces during a virtual interaction spatially match the haptic feedback at the wrist) would result in better perception than other mappings.We performed an experiment where haptic devices at the wrist rendered either normal or shear feedback during manipulation of virtual objects with varying stiffness, mass, or friction properties. Perception of mechanical properties was more accurate with congruent skin stimulation than noncongruent. In addition, discrimination performance and subjective reports were positively influenced by congruence. This study demonstrates that users can perceive mechanical properties via haptic feedback provided at the wrist with a consistent mapping between haptic feedback and interaction forces at the fingertips, regardless of congruence.Article Citation Count: 3Shared-Control Teleoperation Paradigms on a Soft-Growing Robot Manipulator(Springer, 2023) Stroppa, Fabio; Selvaggio, Mario; Agharese, Nathaniel; Luo, Ming; Blumenschein, Laura H.; Hawkes, Elliot W.; Okamura, Allison M.Semi-autonomous telerobotic systems allow both humans and robots to exploit their strengths while enabling personalized execution of a remote task. For soft robots with kinematic structures dissimilar to those of human operators, it is unknown how the allocation of control between the human and the robot changes the performance. This work presents a set of interaction paradigms between a human and a remote soft-growing robot manipulator, with demonstrations in both real and simulated scenarios. The soft robot can grow and retract by eversion and inversion of its tubular body, a property we exploit in the interaction paradigms. We implemented and tested six different human-robot interaction paradigms, with full teleoperation at one extreme and gradually adding autonomy to various aspects of the task execution. All paradigms are demonstrated by two experts and two naive operators. Results show that humans and the soft robot manipulator can effectively split their control along different degrees of freedom while acting simultaneously to accomplish a task. In the simple pick-and-place task studied in this work, performance improves as the control is gradually given to the robot's autonomy, especially when the robot can correct certain human errors. However, human engagement is maximized when the control over a task is at least partially shared. Finally, when the human operator is assisted by haptic guidance, which is computed based on soft robot tip position errors, we observed that the improvement in performance is dependent on the expertise of the human operator.Conference Object Citation Count: 8Task-Specific Design Optimization and Fabrication for Inflated-Beam Soft Robots with Growable Discrete Joints(Ieee, 2022) Exarchos, Ioannis; Wang, Karen; Do, Brian H.; Stroppa, Fabio; Coad, Margaret M.; Okamura, Allison M.; Liu, C. KarenSoft robot serial chain manipulators with the capability for growth, stiffness control, and discrete joints have the potential to approach the dexterity of traditional robot arms, while improving safety, lowering cost, and providing an increased workspace, with potential application in home environments. This paper presents an approach for design optimization of such robots to reach specified targets while minimizing the number of discrete joints and thus construction and actuation costs. We define a maximum number of allowable joints, as well as hardware constraints imposed by the materials and actuation available for soft growing robots, and we formulate and solve an optimization problem to output a planar robot design, i.e., the total number of potential joints and their locations along the robot body, which reaches all the desired targets, avoids known obstacles, and maximizes the workspace. We demonstrate a process to rapidly construct the resulting soft growing robot design. Finally, we use our algorithm to evaluate the ability of this design to reach new targets and demonstrate the algorithm's utility as a design tool to explore robot capabilities given various constraints and objectives.