Browsing by Author "Shahid, Tahura"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Master Thesis EEG Verilerinden Gürültü Giderme(2024) Shahid, Tahura; Gürkan, CerenElectroencephalography (EEG) is a vital tool for non-invasive brain activity monitoring, widely used in clinical and research settings, but often contaminated by noise from muscle movements, eye blinks, and electrical interference, which can obscure neural information. This thesis explores advanced machine learning techniques, focusing on autoencoders with Neural Ordinary Differential Equations (NODEs) and Residual Networks (ResNet), to enhance EEG denoising. While traditional methods like Independent Component Analysis (ICA) have been effective in separating EEG signals from artifacts by leveraging statistical independence, they struggle with the dynamic and nonlinear nature of EEG data. To overcome these limitations, this research integrates autoencoders with NODEs and ResNet, combining autoencoders' dimensionality reduction with NODEs' continuous-time dynamics and ResNet's skip connections to handle the complexity of multivariate EEG signals. The proposed hybrid framework significantly improves denoising accuracy, computational efficiency, and adaptability to different noise levels in bio-signals, outperforming traditional methods. Results, evaluated through metrics like Mean Squared Error (MSE), Relative Root Mean Squared Error (RRMSE), and correlation coefficients, show substantial improvements in noise removal for both synthetic and real EEG datasets, marking a significant advancement in EEG signal processing. Keywords: Electroencephalography (EEG), Denoising, Machine Learning, Independent Component Analysis (ICA), Neural Ordinary Differential Equations (ODEs), Residual Network, Autoencoders, Signal Processing, Brain Waves, Noise RemovalArticle Citation - WoS: 1Citation - Scopus: 1An efficient PanAir integrated framework for automated analysis(Nature Portfolio, 2024) Shahid, Tahura; Gurkan, CerenThe work proposed here is an automated pre and post-processor integrated to PanAir that is is a high-order aerodynamic panel method-based software for flow analysis developed in 70s but still in active use especially for preliminary aircraft design. With the integrated environment proposed in this work, manipulation of input and output data to and from PanAir is bypassed successfully that is otherwise requires manual manipulations and use of third party software. The integrated environment is validated over a Cessna 210 aircraft with a modified NLF (1)-0414 airfoil. The flow around the aircraft is analyzed using PanAir together with the integrated environment and results show that pre and post processing times reduced and ease in PanAir use is increased significantly.
