Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://gcris.khas.edu.tr/handle/20.500.12469/47
Browse
Browsing Elektrik - Elektronik Mühendisliği Bölümü Koleksiyonu by WoS Q "Q1"
Now showing 1 - 20 of 34
- Results Per Page
- Sort Options
Article Citation Count: 5Code shift keying impulse modulation for UWB communications(IEEE-INST Electrical Electronics Engineers Inc, 2008) Erküçük, Serhat; Kim, Dong In; Kwak, Kyung SupIn this paper the system performance of M-ary code shift keying (MCSK) impulse modulation is studied in detail and compared to M-ary pulse position modulation (MPPM) under single- and multi-user scenarios. For that bounds on the semi-analytic symbol-error rate (SER) expressions are derived and simulation studies are conducted. When practical implementations of MCSK and MPPM are considered it is shown that MCSK can provide about 2 dB performance gain over MPPM as it reduces the effects of multipath delays on the decision variables by randomizing locations of the transmit pulse.Article Citation Count: 9Complete density calculations of q-state Potts and clock models: Reentrance of interface densities under symmetry breaking(Amer Physical Soc, 2020) Artun, E. Can; Berker, A. NihatAll local bond-state densities are calculated for q-state Potts and clock models in three spatial dimensions, d = 3. The calculations are done by an exact renormalization group on a hierarchical lattice, including the density recursion relations, and simultaneously are the Migdal-Kadanoff approximation for the cubic lattice. Reentrant behavior is found in the interface densities under symmetry breaking, in the sense that upon lowering the temperature, the value of the density first increases and then decreases to its zero value at zero temperature. For this behavior, a physical mechanism is proposed. A contrast between the phase transition of the two models is found and explained by alignment and entropy, as the number of states q goes to infinity. For the clock models, the renormalization-group flows of up to 20 energies are used.Article Citation Count: 13Conditional Power and Rate Adaptation for MQAM/OFDM Systems Under CFO With Perfect and Imperfect Channel Estimation Errors(IEEE-INST Electrical Electronics Engineers Inc, 2015) Dong, Zhicheng; Fan, Pingzhi; Panayırcı, Erdal; Lei, XianfuIn this paper a new conditional power and rate adaptation scheme for orthogonal frequency-division multiplexing (OFDM) systems is proposed in the presence of carrier frequency offset (CFO) with perfect and imperfect channel state information (CSI). The conventional adaptive scheme is shown to be a special case of the conditionally adaptive scheme technique that enables the resulting nonconvex optimization problem which is solved in a feasible way. It leads to a solution for optimal power adaptation that maximizes the spectral efficiency of an OFDM system using M-ary quadrature amplitude modulation (MQAM) under average power and instantaneous bit error rate (BER) constraints. Closed-form expressions for the average spectral efficiency (ASE) of adaptive OFDM systems are derived for perfect and imperfect CSI cases. The theoretical results and computer simulations show that range of the conditional adaptation becomes narrow and the performance of constant power and continuous rate is very close to that of the conditionally adaptive power and continuous rate for higher CFO or high signal-to-noise ratio (SNR) values.Article Citation Count: 6Correlation of ternary liquid--liquid equilibrium data using neural network-based activity coefficient model(Springer, 2014) Özmen, AtillaLiquid--liquid equilibrium (LLE) data are important in chemical industry for the design of separation equipments and it is troublesome to determine experimentally. In this paper a new method for correlation of ternary LLE data is presented. The method is implemented by using a combined structure that uses genetic algorithm (GA)--trained neural network (NN). NN coefficients that satisfy the criterion of equilibrium were obtained by using GA. At the training phase experimental concentration data and corresponding activity coefficients were used as input and output respectively. At the test phase trained NN was used to correlate the whole experimental data by giving only one initial value. Calculated results were compared with the experimental data and very low root-mean-square deviation error values are obtained between experimental and calculated data. By using this model tie-line and solubility curve data of LLE can be obtained with only a few experimental data.Article Citation Count: 9Devil's staircase continuum in the chiral clock spin glass with competing ferromagnetic-antiferromagnetic and left-right chiral interactions(Amer Physical Soc., 2017) Caglar, Tolga; Berker, A. NihatThe chiral clock spin-glass model with q = 5 states with both competing ferromagnetic-antiferromagnetic and left-right chiral frustrations is studied in d = 3 spatial dimensions by renormalization-group theory. The global phase diagram is calculated in temperature antiferromagnetic bond concentration p random chirality strength and right-chirality concentration c. The system has a ferromagnetic phase a multitude of different chiral phases a chiral spin-glass phase and a critical (algebraically) ordered phase. The ferromagnetic and chiral phases accumulate at the disordered phase boundary and form a spectrum of devil's staircases where different ordered phases characteristically intercede at all scales of phase-diagram space. Shallow and deep reentrances of the disordered phase bordered by fragments of regular and temperature-inverted devil's staircases are seen. The extremely rich phase diagrams are presented as continuously and qualitatively changing videos.Article Citation Count: 6Growth and shape stability of Cu-Ni core-shell nanoparticles: an atomistic perspective(Royal Soc Chemistry, 2018) İlker, Efe; Madran, Melihat; Konuk, Mine; Durukanoğlu, SondanThe growth and shape stability of bi-metallic cubic Cu-Ni nanoparticles are studied using atomic-level simulations. Cubic nano-crystals coated with an ultra-thin Cu layer can be readily obtained when Ni cubic nanoparticles are used as the seeds. At elevated temperatures the Cu seed with extending Ni branches preserves its shape compared to the Ni seed with extending Cu branches.Article Citation Count: 112IEEE 802.15.7r1 Reference Channel Models for Visible Light Communications(IEEE-Inst Electrical Electronics Engineers Inc, 2017) Baykaş, Tunçer; Narmanlıoğlu, Ömer; Baykas, Tuncer; Uysal, Murat; Panayırcı, ErdalThe IEEE has established the standardization group 802.15.7r1 "Short Range Optical Wireless Communications", which is currently in the process of developing a standard for visible light communication (VLC). As with any other communication system, realistic channel models are of critical importance for VLC system design, performance evaluation, and testing. This article presents the reference channel models that were endorsed by the IEEE 802.15.7r1 Task Group for evaluation of VLC system proposals. These were developed for typical indoor environments, including home, office, and manufacturing cells. While highlighting the channel models, we further discuss physical layer techniques potentially considered for IEEE 802.15.7r1.Article Citation Count: 19Iterative channel estimation and decoding of turbo coded SFBC-OFDM systems(IEEE, 2007) Doğan, Hakan; Çırpan, Hakan Ali; Panayırcı, ErdalWe consider the design of turbo receiver structures for space-frequency block coded orthogonal frequency division multiplexing (SFBC-OFDM) systems in the presence of unknown frequency and time selective fading channels. The Turbo receiver structures for SFBC-OFDM systems under consideration consists of an iterative MAP Expectation/Maximization (EM) channel estimation algorithm soft MMSE-SFBC decoder and a soft MAP outer-channel-code decoder. MAP-EM employs iterative channel estimation and it improves receiver performance by re-estimating the channel after each decoder iteration. Moreover the MAP-EM approach considers the channel variations as random processes and applies the Karhunen-Loeve (KL) orthogonal series expansion. The optimal truncation property of the KL expansion can reduce computational load on the iterative estimation approach. The performance of the proposed approaches are studied in terms of mean square error and bit-error rate. Through computer simulations the effect of a pilot spacing on the channel estimator performance and sensitivity of turbo receiver structures on channel estimation error are studied. Simulation results illustrate that receivers with turbo coding are very sensitive to channel estimation errors compared to receivers with convolutional codes. Moreover superiority of the turbo coded SFBC-OFDM systems over the turbo coded STBC-OFDM systems is observed especially for high Doppler frequencies.Article Citation Count: 76Joint Channel Estimation Equalization and Data Detection for OFDM Systems in the Presence of Very High Mobility(IEEE-INST Electrical Electronics Engineers Inc, 2010) Şenol, Habib; Şenol, Habib; Poor, H. VincentThis paper is concerned with the challenging and timely problem of joint channel estimation equalization and data detection for uplink orthogonal frequency division multiplexing (OFDM) systems in the presence of frequency selective and very rapidly time varying channels. The resulting algorithm is based on the space alternating generalized expectation maximization (SAGE) technique which is particularly well suited to multicarrier signal formats leading to a receiver structure that also incorporates interchannel interference (ICI) cancelation. In order to reduce the computational complexity of the algorithm band-limited discrete cosine orthogonal basis functions are employed to represent the rapidly time-varying fading channel by the discrete cosine serial expansion coefficients. It is shown that depending on the normalized Doppler frequency only a small number of expansion coefficients is sufficient to approximate the channel perfectly and there is no need to know the correlation function of the input signal. In this way the resulting reduced dimensional channel coefficients are estimated and the data symbols detected iteratively with tractable complexity. The proposed SAGE joint detection algorithm updates the data sequences serially and the channel parameters are updated in parallel leading to a receiver structure that also incorporates ICI cancelation. Computer simulations show that the cosine transformation represents the time-varying channel very effectively and the proposed algorithm has excellent symbol error rate and channel estimation performance even with a very small number of channel expansion coefficients employed in the algorithm resulting in substantial reduction of the computational complexity.Article Citation Count: 5Joint Detection of Primary Systems Using UWB Impulse Radios(IEEE-INST Electrical Electronics Engineers Inc, 2011) Erküçük, Serhat; Lampe, Lutz; Schober, RobertRegulation in Europe and Japan requires the implementation of detect-and-avoid (DAA) techniques in some bands for the coexistence of licensed primary systems and secondary ultra wideband (UWB) systems. In a typical coexistence scenario a primary system may have potentially interdependent uplink-downlink communication channels (e. g. simultaneous uplink-downlink communications in a frequency division duplex system) overlapping with the frequency band of a UWB system. If such interdependencies of primary systems' activities are known the UWB system's ability to detect primary systems can be improved. In this study we are interested in determining the possible gains in the detection performance when taking interdependencies into account for practically implementable detection methods. Contrary to selecting the detection thresholds individually for each band as in a conventional detection approach the bands are jointly processed. To this end maximum a posteriori (MAP) decision variables are generated at the receiver and bias terms are introduced to achieve a desired trade-off between the probabilities of detection and false alarm. In addition to finding the optimal detection results based on the Neyman-Pearson (NP) test a suboptimal but practically implementable approach is also considered and the gain compared to conventional independent detection is quantified for various practical scenarios. The results obtained from this study can be used for improving the primary system detection performance of UWB systems as well as for cognitive radios that perform spectrum sensing in multiple bands.Article Citation Count: 27Joint Optimization of Wireless Network Energy Consumption and Control System Performance in Wireless Networked Control Systems(IEEE-INST Electrical Electronics Engineers Inc, 2017) Şadi, Yalçın; Ergen, Sinem ColeriCommunication system design for wireless networked control systems requires satisfying the high reliability and strict delay constraints of control systems for guaranteed stability with the limited battery resources of sensor nodes despite the wireless networking induced non-idealities. These include non-zero packet error probability caused by the unreliability of wireless transmissions and non-zero delay resulting from packet transmission and shared wireless medium. In this paper we study the joint optimization of control and communication systems incorporating their efficient abstractions practically used in real-world scenarios. The proposed framework allows including any non-decreasing function of the power consumption of the nodes as the objective any modulation scheme and any scheduling algorithm. We first introduce an exact solution method based on the analysis of the optimality conditions and smart enumeration techniques. Then we propose two polynomial-time heuristic algorithms based on intelligent search space reduction and smart searching techniques. Extensive simulations demonstrate that the proposed algorithms perform very close to optimal and much better than previous algorithms at much smaller runtime for various scenarios.Article Citation Count: 24Low-Complexity MAP-Based Successive Data Detection for Coded OFDM Systems Over Highly Mobile Wireless Channels(IEEE-INST Electrical Electronics Engineers Inc, 2011) Panayırcı, Erdal; Dogan, Hakan; Poor, H. VincentThis paper is concerned with the challenging and timely problem of data detection for coded orthogonal frequency-division multiplexing (OFDM) systems in the presence of frequency-selective and very rapidly time varying channels. New low-complexity maximum a posteriori probability (MAP) data detection algorithms are proposed based on sequential detection with optimal ordering (SDOO) and sequential detection with successive cancellation (SDSC). The received signal vector is optimally decomposed into reduced dimensional subobservations by exploiting the banded structure of the frequency-domain channel matrix whose bandwidth is a parameter to be adjusted according to the speed of the mobile terminal. The data symbols are then detected by the proposed algorithms in a computationally efficient way by means of the Markov chain Monte Carlo (MCMC) technique with Gibbs sampling. The impact of the imperfect channel state information (CSI) on the bit error rate (BER) performance of these algorithms is investigated analytically and by computer simulations. A detailed computational complexity investigation and simulation results indicate that particularly the algorithm based on SDSC has significant performance and complexity advantages and is very robust against channel estimation errors compared with existing suboptimal detection and equalization algorithms proposed earlier in the literature.Article Citation Count: 13Lower lower-critical spin-glass dimension from quenched mixed-spatial-dimensional spin glasses(Amer Physical Soc., 2018) Atalay, Bora; Berker, A. NihatBy quenched-randomly mixing local units of different spatial dimensionalities we have studied Ising spin-glass systems on hierarchical lattices continuously in dimensionalities 1 <= d <= 3. The global phase diagram in temperature antiferromagnetic bond concentration and spatial dimensionality is calculated. We find that as dimension is lowered the spin-glass phase disappears to zero temperature at the lower-critical dimension d(c) = 2.431. Our system being a physically realizable system this sets an upper limit to the lower-critical dimension in general for the Ising spin-glass phase. As dimension is lowered towards d(c) the spin-glass critical temperature continuously goes to zero but the spin-glass chaos fully subsists to the brink of the disappearance of the spin-glass phase. The Lyapunov exponent measuring the strength of chaos is thus largely unaffected by the approach to d and shows a discontinuity to zero at d(c.)Article Citation Count: 2Maximally random discrete-spin systems with symmetric and asymmetric interactions and maximally degenerate ordering(Amer Physical Soc., 2018) Atalay, Bora; Berker, A. NihatDiscrete-spin systems with maximally random nearest-neighbor interactions that can be symmetric or asymmetric ferromagnetic or antiferromagnetic including off-diagonal disorder are studied for the number of states q = 34 in d dimensions. We use renormalization-group theory that is exact for hierarchical lattices and approximate (Migdal-Kadanoff) for hypercubic lattices. For all d > 1 and all nonmfimte temperatures the system eventually renormalizes to a random single state thus signaling q x q degenerate ordering. Note that this is the maximally degenerate ordering. For high-temperature initial conditions the system crosses over to this highly degenerate ordering only after spending many renormalization-group iterations near the disordered (infinite-temperature) fixed point. Thus a temperature range of short-range disorder in the presence of long-range order is identified as previously seen in underfrustrated Ising spin-glass systems. The entropy is calculated for all temperatures behaves similarly for ferromagnetic and antiferromagnetic interactions and shows a derivative maximum at the short-range disordering temperature. With a sharp immediate contrast of infinitesimally higher dimension 1 + epsilon the system is as expected disordered at all temperatures for d = 1.Article Citation Count: 1Metastable reverse-phase droplets within ordered phases: Renormalization-group calculation of field and temperature dependence of limiting size(AMER PHYSICAL SOC, 2020) Eren, Ege; Berker, A. NihatMetastable reverse-phase droplets are calculated by renormalization-group theory by evaluating the magnetization of a droplet under magnetic field, matching the boundary condition with the reverse phase and noting whether the reverse-phase magnetization sustains. The maximal metastable droplet size and the discontinuity across the droplet boundary are thus calculated as a function of temperature and magnetic field for the Ising model in three dimensions. The method also yields hysteresis loops for finite systems, as function of temperature and system size.Article Citation Count: 13Minimum Length Scheduling for Full Duplex Time-Critical Wireless Powered Communication Networks(IEEE, 2020) Şadi, Yalçın; Şadi, Yalçın; Coleri, SinemRadio frequency (RF) energy harvesting is key in attaining perpetual lifetime for time-critical wireless powered communication networks (WPCNs) due to full control on energy transfer, far field region, small and low-cost circuitry. In this paper, we propose a novel minimum length scheduling problem to determine the optimal power control, time allocation and schedule subject to data, energy causality and maximum transmit power constraints in a full-duplex WPCN. We first formulate the problem as a mixed integer non-linear programming problem and conjecture that the problem is NP-hard. As a solution strategy, we demonstrate that the power control and time allocation, and the scheduling problems can be solved separately in the optimal solution. For the power control and time allocation problem, we derive the optimal solution by evaluating Karush-Kuhn-Tucker conditions. For the scheduling, we introduce a penalty function allowing reformulation of the problem as a sum penalty minimization problem. Upon derivation of the optimality conditions based on the characteristics of the penalty function, we propose two polynomial-time heuristic algorithms and a reduced-complexity exact algorithm employing smart pruning techniques. Via extensive simulations, we illustrate that the proposed heuristic schemes outperform the schemes for predetermined transmission order of users and achieve close-to-optimal solutions.Article Citation Count: 2A Monte Carlo implementation of the SAGE algorithm for joint soft-multiuser decoding channel parameter estimation and code acquisition(2010) Panayırcı, Erdal; Panayırcı, Erdal; Poor, H. Vincent; Ruggieri, MarinaThis paper presents an iterative scheme for joint timing acquisition multi-channel parameter estimation and multiuser soft-data decoding. As an example an asynchronous convolutionally coded direct-sequence code-division multiple-access system is considered. The proposed receiver is derived within the space-alternating generalized expectation-maximization framework implying that convergence in likelihood is guaranteed under appropriate conditions in contrast to many other iterative receiver architectures. The proposed receiver iterates between joint posterior data estimation interference cancellation and single-user channel estimation and timing acquisition. A Markov Chain Monte Carlo technique namely Gibbs sampling is employed to compute the a posteriori probabilities of data symbols in a computationally efficient way. Computer simulations in flat Rayleigh fading show that the proposed algorithm is able to handle high system loads unlike many other iterative receivers. © 2006 IEEE.Article Citation Count: 79New Trellis Code Design for Spatial Modulation(IEEE-INST Electrical Electronics Engineers Inc, 2011) Panayırcı, Erdal; Aygölü, Ümit; Panayırcı, Erdal; Poor, H. VincentSpatial modulation (SM) in which multiple antennas are used to convey information besides the conventional M-ary signal constellations is a new multiple-input multiple-output (MIMO) transmission technique which has recently been proposed as an alternative to V-BLAST (vertical Bell Labs layered space-time). In this paper a novel MIMO transmission scheme called spatial modulation with trellis coding (SM-TC) is proposed. Similar to the conventional trellis coded modulation (TCM) in this scheme a trellis encoder and an SM mapper are jointly designed to take advantage of the benefits of both. A soft decision Viterbi decoder which is fed with the soft information supplied by the optimal SM decoder is used at the receiver. A pairwise error probability (PEP) upper bound is derived for the SM-TC scheme in uncorrelated quasi-static Rayleigh fading channels. From the PEP upper bound code design criteria are given and then used to obtain new 4- 8- and 16-state SM-TC schemes using quadrature phase-shift keying (QPSK) and 8-ary phase-shift keying (8-PSK) modulations for 2 3 and 4 bits/s/Hz spectral efficiencies. It is shown via computer simulations and also supported by a theoretical error performance analysis that the proposed SM-TC schemes achieve significantly better error performance than the classical space-time trellis codes and coded V-BLAST systems at the same spectral efficiency yet with reduced decoding complexity.Article Citation Count: 35Nondata-aided joint channel estimation and equalization for OFDM systems in very rapidly varying mobile channels(IEEE-INST Electrical Electronics Engineers Inc, 2012) Şenol, Habib; Panayırcı, Erdal; Poor, H. VincentThis paper is concerned with the challenging and timely problem of joint channel estimation and equalization for orthogonal frequency division multiplexing (OFDM) systems in the presence of frequency selective and very rapidly time varying channels. The resulting algorithm is based on the space alternating generalized expectation maximization-maximum a posteriori probability (SAGE-MAP) technique which is particularly well suited to multicarrier signal formats. The algorithm is implemented in the time-domain which enables one to use the Gaussian approximation of the transmitted OFDM samples. Consequently the averaging process of the nonpilot data symbols becomes analytically possible resulting in a feasible and computationally efficient channel estimation algorithm leading to a receiver structure that yields also an equalized output from which the data symbols are detected with excellent symbol error rate (SER) performance. Based on this Gaussian approximation the exact Bayesian Cramer Rao lower bound (CRLB) as well as the convergence rate of the algorithm are derived analytically. To reduce the computational complexity of the algorithm discrete Legendre orthogonal basis functions are employed to represent the rapidly time-varying fading channel. It is shown that depending on the normalized Doppler frequency only a small number of expansion coefficients is sufficient to approximate the channel very well and there is no need to know the correlation function of the input signal. The computational complexity of the algorithm is shown to be similar to O(NL) per detected data symbol and per SAGE-MAP algorithm cycle where N is the number of OFDM subcarriers and L is the number of multipath components.Article Citation Count: 92Optical MIMO-OFDM With Generalized LED Index Modulation(IEEE-INST Electrical Electronics Engineers Inc, 2017) Yeşilkaya, Anıl; Basar, Ertugrul; Miramirkhani, Farshad; Panayırcı, Erdal; Uysal, Murat; Haas, HaraldVisible light communications (VLC) is a promising and uncharted new technology for the next generation of wireless communication systems. This paper proposes a novel generalized light emitting diode (LED) index modulation method for multiple-input-multiple-output (MIMO) orthogonal frequency division multiplexing (OFDM)-based VLC systems. The proposed scheme avoids the typical spectrum efficiency losses incurred by time- and frequency-domain shaping in OFDM signals. This is achieved by exploiting spatial multiplexing along with LED index modulation. Accordingly real and imaginary components of the complex time-domain OFDM signals are separated first then resulting bipolar signals are transmitted over a VLC channel by encoding sign information in LED indexes. As a benchmark we demonstrate the performance analysis of our proposed system for both analytical and physical channel models. Furthermore two novel receiver designs are proposed. Each one is suitable for frequency-flat or selective channel scenarios. It has been shown via extensive computer simulations that the proposed scheme achieves considerably better bit error ratio versus signal-to-noise-ratio performance than the existing VLC-MIMO-OFDM systems that use the same number of transmit and receive units [LEDs and photo diodes (PDs)]. Compared with the single-input single-output (SISO) DC biased optical (DCO)-OFDM system both spectral efficiency and DC bias can be doubled and removed respectively simply by exploiting a MIMO configuration.