Complete density calculations of q-state Potts and clock models: Reentrance of interface densities under symmetry breaking
No Thumbnail Available
Date
2020
Authors
Artun, E. Can
Berker, A. Nihat
Journal Title
Journal ISSN
Volume Title
Publisher
Amer Physical Soc
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
All local bond-state densities are calculated for q-state Potts and clock models in three spatial dimensions, d = 3. The calculations are done by an exact renormalization group on a hierarchical lattice, including the density recursion relations, and simultaneously are the Migdal-Kadanoff approximation for the cubic lattice. Reentrant behavior is found in the interface densities under symmetry breaking, in the sense that upon lowering the temperature, the value of the density first increases and then decreases to its zero value at zero temperature. For this behavior, a physical mechanism is proposed. A contrast between the phase transition of the two models is found and explained by alignment and entropy, as the number of states q goes to infinity. For the clock models, the renormalization-group flows of up to 20 energies are used.
Description
Keywords
Hierarchical Lattices, Phase-Transitions, Spin Systems, Gas
Turkish CoHE Thesis Center URL
Fields of Science
Citation
9
WoS Q
Q1
Scopus Q
Q1
Source
Volume
102
Issue
6
Start Page
062135-1