Power Consumption Estimation using In-Memory Database Computation

dc.authoridDAG, HASAN/0000-0001-6252-1870
dc.authorwosidDAG, HASAN/T-5301-2018
dc.contributor.authorDağ, Hasan
dc.contributor.authorAlamin, Mohamed
dc.date.accessioned2024-10-15T19:39:47Z
dc.date.available2024-10-15T19:39:47Z
dc.date.issued2016
dc.departmentKadir Has Universityen_US
dc.department-temp[Dag, Hasan; Alamin, Mohamed] Kadir Has Univ, Management Informat Syst Dept, Istanbul, Turkeyen_US
dc.descriptionDAG, HASAN/0000-0001-6252-1870en_US
dc.description.abstractIn order to efficiently predict electricity consumption, we need to improve both the speed and the reliability of computational environment. Concerning the speed, we use inmemory database, which is taught to be the best solution that allows manipulating data many times faster than the hard disk. For reliability, we use machine learning algorithms. Since the model performance and accuracy may vary depending on data each time, we test many algorithms and select the best one. In this study, we use SmartMeter Energy Consumption Data in London Households to predict electricity consumption using machine learning algorithms written in Python programming language and in-memory database computation package, Aerospike. The test results show that the best algorithm for our data set is Bagging algorithm. We also emphatically prove that R-squared may not always be a good test to choose the best algorithm.en_US
dc.description.woscitationindexConference Proceedings Citation Index - Science
dc.identifier.citation0
dc.identifier.doi[WOS-DOI-BELIRLENECEK-9]
dc.identifier.endpage169en_US
dc.identifier.isbn9781509037841
dc.identifier.scopusqualityN/A
dc.identifier.startpage164en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/6346
dc.identifier.wosWOS:000391440600031
dc.identifier.wosqualityN/A
dc.language.isoenen_US
dc.publisherIeeeen_US
dc.relation.ispartof13th HONET-ICT International Symposium on Smart MicroGrids for Sustainable Energy Sources enabled by Photonics and IoT Sensors -- OCT 13-14, 2016 -- Nicosia, CYPRUSen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectIn-Memory Databaseen_US
dc.subjectMachine Learningen_US
dc.subjectPower Consumptionen_US
dc.titlePower Consumption Estimation using In-Memory Database Computationen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicatione02bc683-b72e-4da4-a5db-ddebeb21e8e7
relation.isAuthorOfPublication.latestForDiscoverye02bc683-b72e-4da4-a5db-ddebeb21e8e7

Files