Block Elimination Distance

dc.contributor.author Diner, Oznur Yasar
dc.contributor.author Giannopoulou, Archontia C.
dc.contributor.author Stamoulis, Giannos
dc.contributor.author Thilikos, Dimitrios M.
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2023-10-19T15:12:47Z
dc.date.available 2023-10-19T15:12:47Z
dc.date.issued 2022
dc.description.abstract We introduce the parameter of block elimination distance as a measure of how close a graph is to some particular graph class. Formally, given a graph class g, the class B(G) contains all graphs whose blocks belong to G and the class A(G) contains all graphs where the removal of a vertex creates a graph in G. Given a hereditary graph class G, we recursively define G((k)) so that G((0)) = B(G) and, if k >= 1 G((k)) B(A(G((k-1))) ) N We show that, for every nontrivial hereditary class g, the problem of deciding whether G is an element of G((k)) is NP-complete. We focus on the case where G is minor-closed and we study the minor obstruction set of G((k)) i.e., the minor-minimal graphs not in G((k)). We prove that the size of the obstructions of G((k)) is upper bounded by some explicit function ofk and the maximum size of a minor obstruction of G. This implies that the problem of deciding whether G is an element of G((k)) is constructively fixed parameter tractable, when parameterized by k. Finally, we give two graph operations that generate members of G((k)) from members of G((k -1)) and we prove that this set of operations is complete for the class O of outerplanar graphs.Please check and confirm if the authors Given and Family names have been correctly identified for author znur YaYar Diner. All authors names have been identified conectly. Please confirm if the corresponding author is correctly identified. Amend if necessary.This is correct en_US
dc.description.sponsorship Spanish Agencia Estatal de Investigacion [MTM2017-82166-P]; ANR [ANR-16-CE40-0028, ANR-17-CE23-0010]; French-German Collaboration ANR/DFG [ANR-20-CE92-0027] en_US
dc.description.sponsorship Oznur Yasar Diner was supported by the Spanish Agencia Estatal de Investigacion under project MTM2017-82166-P. Giannos Stamoulis and Dimitrios M. Thilikos were supported by the ANR projects DEMOGRAPH (ANR-16-CE40-0028), ESIGMA (ANR-17-CE23-0010), and the French-German Collaboration ANR/DFG Project UTMA (ANR-20-CE92-0027) en_US
dc.identifier.citationcount 1
dc.identifier.doi 10.1007/s00373-022-02513-y en_US
dc.identifier.issn 0911-0119
dc.identifier.issn 1435-5914
dc.identifier.scopus 2-s2.0-85135460318 en_US
dc.identifier.uri https://doi.org/10.1007/s00373-022-02513-y
dc.identifier.uri https://hdl.handle.net/20.500.12469/5534
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Springer Japan Kk en_US
dc.relation.ispartof Graphs and Combinatorics en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Graph minors en_US
dc.subject Block elimination distance en_US
dc.subject Elimination distance en_US
dc.subject Minor obstructions en_US
dc.subject Parameterized algorithms en_US
dc.title Block Elimination Distance en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Diner, Öznur Yaşar/0000-0002-9271-2691
gdc.author.id Stamoulis, Giannos/0000-0002-4175-7793
gdc.author.institutional Yaşar Diner, Öznur
gdc.author.wosid Diner, Öznur Yaşar/AAT-7443-2020
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.departmenttemp [Diner, Oznur Yasar] Kadir Has Univ, Comp Engn Dept, Istanbul, Turkey; [Diner, Oznur Yasar] Univ Politecn Cataluna, Dept Math, Barcelona, Spain; [Giannopoulou, Archontia C.; Stamoulis, Giannos] Natl & Kapodistrian Univ Athens, Dept Informat & Telecommun, Athens, Greece; [Stamoulis, Giannos; Thilikos, Dimitrios M.] Univ Montpellier, CNRS, LIRMM, Montpellier, France en_US
gdc.description.issue 5 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.volume 38 en_US
gdc.description.wosquality N/A
gdc.identifier.openalex W3134773034
gdc.identifier.wos WOS:000836615400002 en_US
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.8196019E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Elimination distance
gdc.oaire.keywords Obstructions
gdc.oaire.keywords 05C75, 05C83, 05C75, 05C69
gdc.oaire.keywords Block elimination distance
gdc.oaire.keywords G.2.2
gdc.oaire.keywords Graph class
gdc.oaire.keywords Parameterized algorithms
gdc.oaire.keywords Non-trivial
gdc.oaire.keywords Minor obstructions
gdc.oaire.keywords Obstruction
gdc.oaire.keywords Computer Science - Data Structures and Algorithms
gdc.oaire.keywords Parameter estimation
gdc.oaire.keywords Mathematics - Combinatorics
gdc.oaire.keywords Biconnected graph
gdc.oaire.keywords Biconnected graphs
gdc.oaire.keywords Graph minors
gdc.oaire.keywords Graph theory
gdc.oaire.keywords Graphic methods
gdc.oaire.keywords Parameterized algorithm
gdc.oaire.keywords Class B
gdc.oaire.keywords Class A
gdc.oaire.keywords F.2.2
gdc.oaire.keywords Class G
gdc.oaire.keywords Computer Science - Discrete Mathematics
gdc.oaire.popularity 5.6458687E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0101 mathematics
gdc.openalex.fwci 0.742
gdc.openalex.normalizedpercentile 0.57
gdc.opencitations.count 4
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 5
gdc.scopus.citedcount 5
gdc.wos.citedcount 5
relation.isAuthorOfPublication 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5534.pdf
Size:
745.98 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text