Deep Learning-Based Epicenter Localization Using Single-Station Strong Motion Records

dc.contributor.author Turkmen, Melek
dc.contributor.author Meral, Sanem
dc.contributor.author Yilmaz, Baris
dc.contributor.author Cikis, Melis
dc.contributor.author Akagunduz, Erdem
dc.contributor.author Tileylioglu, Salih
dc.date.accessioned 2026-01-15T14:58:14Z
dc.date.available 2026-01-15T14:58:14Z
dc.date.issued 2025
dc.description.abstract This paper explores the application of deep learning (DL) techniques to strong motion records for single-station epicenter localization. Often underutilized in seismology-related studies, strong motion records contain rich information for source parameter inference. We investigate whether DL-based methods can effectively leverage this data for accurate epicenter localization. Our study introduces AFAD-1218, a collection comprising more than 36,000 strong motion records sourced from Turkey. To utilize the strong motion records represented in either the time or the frequency domain, we propose two neural network architectures: deep residual network and temporal convolutional networks. Our findings highlight significant reductions in prediction error achieved through the exclusion of low signal-to-noise ratio records, both in nationwide experiments and regional transfer-learning scenarios. Overall, this research underscores the promise of DL techniques in harnessing strong motion records for improved seismic event characterization and localization. Our codes are available via this repo: https://github.com/melekturkmen/EarthQuakeLocalization en_US
dc.description.sponsorship Scientific and Technological Research Council of Turkey (TUBITAK) [121M732]; TUBITAK en_US
dc.description.sponsorship This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 121M732. The authors thank TUBITAK for their supports. en_US
dc.identifier.doi 10.1007/s10518-025-02327-2
dc.identifier.issn 1570-761X
dc.identifier.issn 1573-1456
dc.identifier.scopus 2-s2.0-105024777284
dc.identifier.uri https://doi.org/10.1007/s10518-025-02327-2
dc.identifier.uri https://hdl.handle.net/20.500.12469/7685
dc.language.iso en en_US
dc.publisher Springer en_US
dc.relation.ispartof Bulletin of Earthquake Engineering en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Epicenter Localization en_US
dc.subject Deep Learning en_US
dc.subject Single Station en_US
dc.subject Strong Ground Motion Records en_US
dc.title Deep Learning-Based Epicenter Localization Using Single-Station Strong Motion Records en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.scopusid 58952677300
gdc.author.scopusid 59181524600
gdc.author.scopusid 58952677200
gdc.author.scopusid 57221814749
gdc.author.scopusid 8331988500
gdc.author.scopusid 23478717400
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.collaboration.industrial true
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Turkmen, Melek; Yilmaz, Baris; Akagunduz, Erdem] METU, Grad Sch Informat, Dept Modeling & Simulat, Ankara, Turkiye; [Meral, Sanem] Turkish Aerosp Inc, Dept Syst Engn, Ankara, Turkiye; [Cikis, Melis] ASELSAN Inc, Dept Syst Engn, Ankara, Turkiye; [Tileylioglu, Salih] Kadir Has Univ, Dept Civil Engn, Istanbul, Turkiye en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W4417276529
gdc.identifier.wos WOS:001637025600001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.4895952E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Signal Processing (eess.SP)
gdc.oaire.keywords FOS: Electrical engineering, electronic engineering, information engineering
gdc.oaire.keywords Electrical Engineering and Systems Science - Signal Processing
gdc.oaire.popularity 2.7494755E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.scopus.citedcount 0
gdc.virtual.author Tileylioğlu, Salih
gdc.wos.citedcount 0
relation.isAuthorOfPublication dfe85511-50a7-4e38-99e6-49745226a2e5
relation.isAuthorOfPublication.latestForDiscovery dfe85511-50a7-4e38-99e6-49745226a2e5
relation.isOrgUnitOfPublication 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a

Files