Deep Learning-Based Epicenter Localization Using Single-Station Strong Motion Records
| dc.contributor.author | Turkmen, Melek | |
| dc.contributor.author | Meral, Sanem | |
| dc.contributor.author | Yilmaz, Baris | |
| dc.contributor.author | Cikis, Melis | |
| dc.contributor.author | Akagunduz, Erdem | |
| dc.contributor.author | Tileylioglu, Salih | |
| dc.date.accessioned | 2026-01-15T14:58:14Z | |
| dc.date.available | 2026-01-15T14:58:14Z | |
| dc.date.issued | 2025 | |
| dc.description.abstract | This paper explores the application of deep learning (DL) techniques to strong motion records for single-station epicenter localization. Often underutilized in seismology-related studies, strong motion records contain rich information for source parameter inference. We investigate whether DL-based methods can effectively leverage this data for accurate epicenter localization. Our study introduces AFAD-1218, a collection comprising more than 36,000 strong motion records sourced from Turkey. To utilize the strong motion records represented in either the time or the frequency domain, we propose two neural network architectures: deep residual network and temporal convolutional networks. Our findings highlight significant reductions in prediction error achieved through the exclusion of low signal-to-noise ratio records, both in nationwide experiments and regional transfer-learning scenarios. Overall, this research underscores the promise of DL techniques in harnessing strong motion records for improved seismic event characterization and localization. Our codes are available via this repo: https://github.com/melekturkmen/EarthQuakeLocalization | en_US |
| dc.description.sponsorship | Scientific and Technological Research Council of Turkey (TUBITAK) [121M732]; TUBITAK | en_US |
| dc.description.sponsorship | This study was supported by Scientific and Technological Research Council of Turkey (TUBITAK) under the Grant Number 121M732. The authors thank TUBITAK for their supports. | en_US |
| dc.identifier.doi | 10.1007/s10518-025-02327-2 | |
| dc.identifier.issn | 1570-761X | |
| dc.identifier.issn | 1573-1456 | |
| dc.identifier.scopus | 2-s2.0-105024777284 | |
| dc.identifier.uri | https://doi.org/10.1007/s10518-025-02327-2 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/7685 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer | en_US |
| dc.relation.ispartof | Bulletin of Earthquake Engineering | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Epicenter Localization | en_US |
| dc.subject | Deep Learning | en_US |
| dc.subject | Single Station | en_US |
| dc.subject | Strong Ground Motion Records | en_US |
| dc.title | Deep Learning-Based Epicenter Localization Using Single-Station Strong Motion Records | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 58952677300 | |
| gdc.author.scopusid | 59181524600 | |
| gdc.author.scopusid | 58952677200 | |
| gdc.author.scopusid | 57221814749 | |
| gdc.author.scopusid | 8331988500 | |
| gdc.author.scopusid | 23478717400 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.collaboration.industrial | true | |
| gdc.description.department | Kadir Has University | en_US |
| gdc.description.departmenttemp | [Turkmen, Melek; Yilmaz, Baris; Akagunduz, Erdem] METU, Grad Sch Informat, Dept Modeling & Simulat, Ankara, Turkiye; [Meral, Sanem] Turkish Aerosp Inc, Dept Syst Engn, Ankara, Turkiye; [Cikis, Melis] ASELSAN Inc, Dept Syst Engn, Ankara, Turkiye; [Tileylioglu, Salih] Kadir Has Univ, Dept Civil Engn, Istanbul, Turkiye | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q1 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W4417276529 | |
| gdc.identifier.wos | WOS:001637025600001 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.4895952E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Signal Processing (eess.SP) | |
| gdc.oaire.keywords | FOS: Electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.keywords | Electrical Engineering and Systems Science - Signal Processing | |
| gdc.oaire.popularity | 2.7494755E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | International | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 3 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Tileylioğlu, Salih | |
| gdc.wos.citedcount | 0 | |
| relation.isAuthorOfPublication | dfe85511-50a7-4e38-99e6-49745226a2e5 | |
| relation.isAuthorOfPublication.latestForDiscovery | dfe85511-50a7-4e38-99e6-49745226a2e5 | |
| relation.isOrgUnitOfPublication | 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 4b0883c1-acc5-4acd-aa2f-cdb841a0e58a |
