Gromov product structures, quadrangle structures and split metric spaces

dc.contributor.authorBilge, Ayşe Hümeyra
dc.contributor.authorBilge, Ayşe Hümeyra
dc.contributor.authorÇelik, Derya
dc.contributor.authorKoçak, Şahin
dc.contributor.authorRezaeinazhad, Arash Mohammadian
dc.date2021-06
dc.date.accessioned2021-04-30T13:11:10Z
dc.date.available2021-04-30T13:11:10Z
dc.date.issued2021-06
dc.date.issued2021
dc.description.abstractLet (X,d) be a finite metric space with elements Pi, i=1,…,n and with distances dij≔d(Pi,Pj) for i,j=1,…,n. The “Gromov product” Δijk, is defined as [Formula presented]. (X,d) is called Δ-generic, if, for each fixed i, the set of Gromov products Δijk has a unique smallest element, Δijiki. The Gromov product structure on a Δ-generic finite metric space (X,d) is the map that assigns the edge Ejiki to Pi. A finite metric space is called “quadrangle generic”, if for all 4-point subsets {Pi,Pj,Pk,Pl}, the set {dij+dkl,dik+djl,dil+djk} has a unique maximal element. The “quadrangle structure” on a quadrangle generic finite metric space (X,d) is defined as a map that assigns to each 4-point subset of X the pair of edges corresponding to the maximal element of the sums of distances. Two metric spaces (X,d) and (X,d′) are said to be Δ-equivalent (Q-equivalent), if the corresponding Gromov product (quadrangle) structures are the same up to a permutation of X. We show that Gromov product classification is coarser than the metric fan classification. Furthermore it is proved that: (i) The isolation index of the 1-split metric δi is equal to the minimal Gromov product at the vertex Pi. (ii) For a quadrangle generic (X,d), the isolation index of the 2-split metric δij is nonzero if and only if the edge Eij is a side in every quadrangle whose set of vertices includes Pi and Pj. (iii) For a quadrangle generic (X,d), the isolation index of an m-split metric δi1…im is nonzero if and only if any edge Eikil is a side in every quadrangle whose vertex set contains Pik and Pil. These results are applied to construct a totally split decomposable metric for n=6.en_US
dc.identifier.citation0
dc.identifier.doi10.1016/j.disc.2021.112358en_US
dc.identifier.issn0012-365X
dc.identifier.issn0012-365Xen_US
dc.identifier.issue6en_US
dc.identifier.scopus2-s2.0-85102024345en_US
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4010
dc.identifier.volume344en_US
dc.identifier.wosWOS:000640570000002en_US
dc.identifier.wosqualityQ3
dc.institutionauthorBilge, Ayşe Hümeyraen_US
dc.institutionauthorRezaeinazhad, Arash Mohammadianen_US
dc.language.isoenen_US
dc.publisherElsevier B.V.en_US
dc.relation.journalDiscrete Mathematicsen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectFinite metric spacesen_US
dc.subjectGromov productsen_US
dc.subjectQuadrangle structuresen_US
dc.subjectSplit metric decompositionsen_US
dc.titleGromov product structures, quadrangle structures and split metric spacesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublication1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery1b50a6b2-7290-44da-b8d5-f048fea8b315

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0012365X21000716-main.pdf
Size:
445.84 KB
Format:
Adobe Portable Document Format
Description: