Gromov product structures, quadrangle structures and split metric spaces
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.contributor.author | Bilge, Ayşe Hümeyra | |
dc.contributor.author | Çelik, Derya | |
dc.contributor.author | Koçak, Şahin | |
dc.contributor.author | Rezaeinazhad, Arash Mohammadian | |
dc.date | 2021-06 | |
dc.date.accessioned | 2021-04-30T13:11:10Z | |
dc.date.available | 2021-04-30T13:11:10Z | |
dc.date.issued | 2021-06 | |
dc.date.issued | 2021 | |
dc.description.abstract | Let (X,d) be a finite metric space with elements Pi, i=1,…,n and with distances dij≔d(Pi,Pj) for i,j=1,…,n. The “Gromov product” Δijk, is defined as [Formula presented]. (X,d) is called Δ-generic, if, for each fixed i, the set of Gromov products Δijk has a unique smallest element, Δijiki. The Gromov product structure on a Δ-generic finite metric space (X,d) is the map that assigns the edge Ejiki to Pi. A finite metric space is called “quadrangle generic”, if for all 4-point subsets {Pi,Pj,Pk,Pl}, the set {dij+dkl,dik+djl,dil+djk} has a unique maximal element. The “quadrangle structure” on a quadrangle generic finite metric space (X,d) is defined as a map that assigns to each 4-point subset of X the pair of edges corresponding to the maximal element of the sums of distances. Two metric spaces (X,d) and (X,d′) are said to be Δ-equivalent (Q-equivalent), if the corresponding Gromov product (quadrangle) structures are the same up to a permutation of X. We show that Gromov product classification is coarser than the metric fan classification. Furthermore it is proved that: (i) The isolation index of the 1-split metric δi is equal to the minimal Gromov product at the vertex Pi. (ii) For a quadrangle generic (X,d), the isolation index of the 2-split metric δij is nonzero if and only if the edge Eij is a side in every quadrangle whose set of vertices includes Pi and Pj. (iii) For a quadrangle generic (X,d), the isolation index of an m-split metric δi1…im is nonzero if and only if any edge Eikil is a side in every quadrangle whose vertex set contains Pik and Pil. These results are applied to construct a totally split decomposable metric for n=6. | en_US |
dc.identifier.citation | 0 | |
dc.identifier.doi | 10.1016/j.disc.2021.112358 | en_US |
dc.identifier.issn | 0012-365X | |
dc.identifier.issn | 0012-365X | en_US |
dc.identifier.issue | 6 | en_US |
dc.identifier.scopus | 2-s2.0-85102024345 | en_US |
dc.identifier.scopusquality | Q1 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12469/4010 | |
dc.identifier.volume | 344 | en_US |
dc.identifier.wos | WOS:000640570000002 | en_US |
dc.identifier.wosquality | Q3 | |
dc.institutionauthor | Bilge, Ayşe Hümeyra | en_US |
dc.institutionauthor | Rezaeinazhad, Arash Mohammadian | en_US |
dc.language.iso | en | en_US |
dc.publisher | Elsevier B.V. | en_US |
dc.relation.journal | Discrete Mathematics | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Finite metric spaces | en_US |
dc.subject | Gromov products | en_US |
dc.subject | Quadrangle structures | en_US |
dc.subject | Split metric decompositions | en_US |
dc.title | Gromov product structures, quadrangle structures and split metric spaces | en_US |
dc.type | Article | en_US |
dspace.entity.type | Publication | |
relation.isAuthorOfPublication | 1b50a6b2-7290-44da-b8d5-f048fea8b315 | |
relation.isAuthorOfPublication.latestForDiscovery | 1b50a6b2-7290-44da-b8d5-f048fea8b315 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0012365X21000716-main.pdf
- Size:
- 445.84 KB
- Format:
- Adobe Portable Document Format
- Description: