Gromov Product Structures, Quadrangle Structures and Split Metric Spaces

dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Çelik, Derya
dc.contributor.author Koçak, Şahin
dc.contributor.author Rezaeinazhad, Arash Mohammadian
dc.contributor.other Industrial Engineering
dc.date 2021-06
dc.date.accessioned 2021-04-30T13:11:10Z
dc.date.available 2021-04-30T13:11:10Z
dc.date.issued 2021-06
dc.date.issued 2021
dc.description.abstract Let (X,d) be a finite metric space with elements Pi, i=1,…,n and with distances dij≔d(Pi,Pj) for i,j=1,…,n. The “Gromov product” Δijk, is defined as [Formula presented]. (X,d) is called Δ-generic, if, for each fixed i, the set of Gromov products Δijk has a unique smallest element, Δijiki. The Gromov product structure on a Δ-generic finite metric space (X,d) is the map that assigns the edge Ejiki to Pi. A finite metric space is called “quadrangle generic”, if for all 4-point subsets {Pi,Pj,Pk,Pl}, the set {dij+dkl,dik+djl,dil+djk} has a unique maximal element. The “quadrangle structure” on a quadrangle generic finite metric space (X,d) is defined as a map that assigns to each 4-point subset of X the pair of edges corresponding to the maximal element of the sums of distances. Two metric spaces (X,d) and (X,d′) are said to be Δ-equivalent (Q-equivalent), if the corresponding Gromov product (quadrangle) structures are the same up to a permutation of X. We show that Gromov product classification is coarser than the metric fan classification. Furthermore it is proved that: (i) The isolation index of the 1-split metric δi is equal to the minimal Gromov product at the vertex Pi. (ii) For a quadrangle generic (X,d), the isolation index of the 2-split metric δij is nonzero if and only if the edge Eij is a side in every quadrangle whose set of vertices includes Pi and Pj. (iii) For a quadrangle generic (X,d), the isolation index of an m-split metric δi1…im is nonzero if and only if any edge Eikil is a side in every quadrangle whose vertex set contains Pik and Pil. These results are applied to construct a totally split decomposable metric for n=6. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1016/j.disc.2021.112358 en_US
dc.identifier.issn 0012-365X
dc.identifier.issn 0012-365X en_US
dc.identifier.issue 6 en_US
dc.identifier.scopus 2-s2.0-85102024345 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://hdl.handle.net/20.500.12469/4010
dc.identifier.volume 344 en_US
dc.identifier.wos WOS:000640570000002 en_US
dc.identifier.wosquality Q3
dc.institutionauthor Bilge, Ayşe Hümeyra en_US
dc.institutionauthor Rezaeinazhad, Arash Mohammadian en_US
dc.language.iso en en_US
dc.publisher Elsevier B.V. en_US
dc.relation.journal Discrete Mathematics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Finite metric spaces en_US
dc.subject Gromov products en_US
dc.subject Quadrangle structures en_US
dc.subject Split metric decompositions en_US
dc.title Gromov Product Structures, Quadrangle Structures and Split Metric Spaces en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0012365X21000716-main.pdf
Size:
445.84 KB
Format:
Adobe Portable Document Format
Description: