Gromov product structures, quadrangle structures and split metric spaces

Loading...
Thumbnail Image

Date

2021-06, 2021

Authors

Bilge, Ayşe Hümeyra
Bilge, Ayşe Hümeyra
Çelik, Derya
Koçak, Şahin
Rezaeinazhad, Arash Mohammadian

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier B.V.

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Let (X,d) be a finite metric space with elements Pi, i=1,…,n and with distances dij≔d(Pi,Pj) for i,j=1,…,n. The “Gromov product” Δijk, is defined as [Formula presented]. (X,d) is called Δ-generic, if, for each fixed i, the set of Gromov products Δijk has a unique smallest element, Δijiki. The Gromov product structure on a Δ-generic finite metric space (X,d) is the map that assigns the edge Ejiki to Pi. A finite metric space is called “quadrangle generic”, if for all 4-point subsets {Pi,Pj,Pk,Pl}, the set {dij+dkl,dik+djl,dil+djk} has a unique maximal element. The “quadrangle structure” on a quadrangle generic finite metric space (X,d) is defined as a map that assigns to each 4-point subset of X the pair of edges corresponding to the maximal element of the sums of distances. Two metric spaces (X,d) and (X,d′) are said to be Δ-equivalent (Q-equivalent), if the corresponding Gromov product (quadrangle) structures are the same up to a permutation of X. We show that Gromov product classification is coarser than the metric fan classification. Furthermore it is proved that: (i) The isolation index of the 1-split metric δi is equal to the minimal Gromov product at the vertex Pi. (ii) For a quadrangle generic (X,d), the isolation index of the 2-split metric δij is nonzero if and only if the edge Eij is a side in every quadrangle whose set of vertices includes Pi and Pj. (iii) For a quadrangle generic (X,d), the isolation index of an m-split metric δi1…im is nonzero if and only if any edge Eikil is a side in every quadrangle whose vertex set contains Pik and Pil. These results are applied to construct a totally split decomposable metric for n=6.

Description

Keywords

Finite metric spaces, Gromov products, Quadrangle structures, Split metric decompositions

Turkish CoHE Thesis Center URL

Fields of Science

Citation

0

WoS Q

Q3

Scopus Q

Q1

Source

Volume

344

Issue

6

Start Page

End Page