The relationship between Google search interest for pulmonary symptoms and COVID-19 cases using dynamic conditional correlation analysis

dc.contributor.author Cinarka, Halit
dc.contributor.author Uysal, Mehmet Atilla
dc.contributor.author Cifter, Atilla
dc.contributor.author Niksarlioglu, Elif Yelda
dc.contributor.author Carkoglu, Asli
dc.date.accessioned 2023-10-19T15:12:09Z
dc.date.available 2023-10-19T15:12:09Z
dc.date.issued 2021
dc.description.abstract This study aims to evaluate the monitoring and predictive value of web-based symptoms (fever, cough, dyspnea) searches for COVID-19 spread. Daily search interests from Turkey, Italy, Spain, France, and the United Kingdom were obtained from Google Trends (GT) between January 1, 2020, and August 31, 2020. In addition to conventional correlational models, we studied the time-varying correlation between GT search and new case reports; we used dynamic conditional correlation (DCC) and sliding windows correlation models. We found time-varying correlations between pulmonary symptoms on GT and new cases to be significant. The DCC model proved more powerful than the sliding windows correlation model. This model also provided better at time-varying correlations (r >= 0.90) during the first wave of the pandemic. We used a root means square error (RMSE) approach to attain symptom-specific shift days and showed that pulmonary symptom searches on GT should be shifted separately. Web-based search interest for pulmonary symptoms of COVID-19 is a reliable predictor of later reported cases for the first wave of the COVID-19 pandemic. Illness-specific symptom search interest on GT can be used to alert the healthcare system to prepare and allocate resources needed ahead of time. en_US
dc.identifier.doi 10.1038/s41598-021-93836-y en_US
dc.identifier.issn 2045-2322
dc.identifier.scopus 2-s2.0-85111078319 en_US
dc.identifier.uri https://doi.org/10.1038/s41598-021-93836-y
dc.identifier.uri https://hdl.handle.net/20.500.12469/5359
dc.language.iso en en_US
dc.publisher Nature Research en_US
dc.relation.ispartof Scientific Reports en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Internet En_Us
dc.subject Trends En_Us
dc.subject Tool En_Us
dc.subject Internet
dc.subject Trends
dc.subject Tool
dc.title The relationship between Google search interest for pulmonary symptoms and COVID-19 cases using dynamic conditional correlation analysis en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Niksarlıoğlu, Elif Yelda/0000-0002-6119-6540
gdc.author.id Çınarka, Halit/0000-0002-4910-149X
gdc.author.id Cifter, Atilla/0000-0002-4365-742X
gdc.author.id UYSAL, MEHMET ATILLA/0000-0002-0430-498X
gdc.author.wosid Niksarlıoğlu, Elif Yelda/X-7048-2019
gdc.author.wosid Çınarka, Halit/AAK-6830-2021
gdc.author.wosid ÇARKOĞLU, ASLI/ABC-5996-2021
gdc.author.wosid Çarkoğlu, Aslı/GWM-7995-2022
gdc.author.wosid UYSAL, MEHMET ATILLA/P-1518-2015
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.departmenttemp [Cinarka, Halit; Uysal, Mehmet Atilla; Niksarlioglu, Elif Yelda] Univ Hlth Sci Turkey, Yedikule Traing & Res Hosp Chest Dis & Thorac Sur, Istanbul, Turkey; [Cifter, Atilla] Altinbas Univ, Dept Econ, Istanbul, Turkey; [Carkoglu, Asli] Kadir Has Univ, Dept Psychol, Istanbul, Turkey en_US
gdc.description.issue 1 en_US
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q1
gdc.description.volume 11 en_US
gdc.description.wosquality Q1
gdc.identifier.openalex W3178741294
gdc.identifier.pmid 34257381 en_US
gdc.identifier.wos WOS:000675273800026 en_US
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 11.0
gdc.oaire.influence 3.0025322E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Internet
gdc.oaire.keywords Turkey
gdc.oaire.keywords Science
gdc.oaire.keywords Q
gdc.oaire.keywords R
gdc.oaire.keywords COVID-19
gdc.oaire.keywords Article
gdc.oaire.keywords United Kingdom
gdc.oaire.keywords Search Engine
gdc.oaire.keywords Italy
gdc.oaire.keywords Spain
gdc.oaire.keywords Tool
gdc.oaire.keywords Medicine
gdc.oaire.keywords Humans
gdc.oaire.keywords France
gdc.oaire.keywords Trends
gdc.oaire.keywords Correlation of Data
gdc.oaire.popularity 1.1533886E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.openalex.collaboration National
gdc.openalex.fwci 2.42682402
gdc.openalex.normalizedpercentile 0.86
gdc.opencitations.count 10
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 21
gdc.plumx.pubmedcites 7
gdc.plumx.scopuscites 13
gdc.scopus.citedcount 13
gdc.virtual.author Çarkoğlu, Aslı
gdc.wos.citedcount 11
relation.isAuthorOfPublication 211ed1cb-2559-4c2e-b1b5-9001ccd7c139
relation.isAuthorOfPublication.latestForDiscovery 211ed1cb-2559-4c2e-b1b5-9001ccd7c139
relation.isOrgUnitOfPublication 9390486a-b1dc-46cf-ad5f-31415f0c8b95
relation.isOrgUnitOfPublication acb86067-a99a-4664-b6e9-16ad10183800
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery 9390486a-b1dc-46cf-ad5f-31415f0c8b95

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5359.pdf
Size:
2.2 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text