A Multi-Objective Optimization Evaluation Framework for Integration of Distributed Energy Resources

dc.authoridozdemir, aydogan/0000-0003-1331-2647
dc.authoridAhmadi, Bahman/0000-0002-1745-2228
dc.authorwosidozdemir, aydogan/A-2223-2016
dc.authorwosidAhmadi, Bahman/GSD-7380-2022
dc.contributor.authorAhmadi, Bahman
dc.contributor.authorCeylan, Oguzhan
dc.contributor.authorOzdemir, Aydogan
dc.date.accessioned2023-10-19T15:11:37Z
dc.date.available2023-10-19T15:11:37Z
dc.date.issued2021
dc.department-temp[Ahmadi, Bahman; Ozdemir, Aydogan] Istanbul Tech Univ, Dept Elect Engn, Istanbul, Turkey; [Ceylan, Oguzhan] Kadir Has Univ, Management & Informat Syst Dept, Istanbul, Turkeyen_US
dc.description.abstractRenewable distributed generation and energy storage systems (ESSs) have been a gamechanger for a reliable and sustainable energy supply. However, this new type of generation should be optimally planned and operated to maximize the expected benefits. In this regard, this paper presents a new formulation for optimal allocation and sizing of distributed energy resources and operation of ESSs to improve the voltage profiles and minimize the annual costs. The multi-objective multiverse optimization method (MOMVO) is used as a solution tool. Moreover, the resulting Pareto optimal solution set is minimized under economic concerns and cost sensitivity to provide a decision-support for the utilities. The proposed formulation and solution algorithm are tested for the revised 33-bus and 69-bus test systems where the load and renewable generation characteristics are taken from real Turkish data. When compared with the base case operating conditions, the proposed formulation eliminated all the voltage magnitude violations, and provided almost 50% loss reductions and 20% energy transfers to off-peak hours. Moreover, Pareto fronts of the proposed method are found to better than the ones provided by non dominated sorting genetic algorithm and multi-objective particle swarm optimization, according to two multi-objective optimization metrics.en_US
dc.description.sponsorshipScientific and Technological Research Council of Turkey (TUBITAK) [117E773]en_US
dc.description.sponsorshipThis research is funded as a part of 117E773 Advanced Evolu-tionary Computation for Smart Grid and Smart Communityproject under the framework of 1001 Project organized by The Scientific and Technological Research Council of Turkey (TUBITAK) .en_US
dc.identifier.citation20
dc.identifier.doi10.1016/j.est.2021.103005en_US
dc.identifier.issn2352-152X
dc.identifier.issn2352-1538
dc.identifier.scopus2-s2.0-85111613407en_US
dc.identifier.scopusqualityQ1
dc.identifier.urihttps://doi.org/10.1016/j.est.2021.103005
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5135
dc.identifier.volume41en_US
dc.identifier.wosWOS:000707773800003en_US
dc.identifier.wosqualityQ1
dc.institutionauthorCeylan, Oğuzhan
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherElsevieren_US
dc.relation.ispartofJournal of Energy Storageen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectDistribution-SystemsEn_Us
dc.subjectDistribution NetworkEn_Us
dc.subjectForecast EngineEn_Us
dc.subjectStorage SystemsEn_Us
dc.subjectLoss ReductionEn_Us
dc.subjectPowerEn_Us
dc.subjectAllocationEn_Us
dc.subjectWindEn_Us
dc.subjectReanalysisEn_Us
dc.subjectOperationEn_Us
dc.subjectDistribution-Systems
dc.subjectDistribution Network
dc.subjectForecast Engine
dc.subjectStorage Systems
dc.subjectLoss Reduction
dc.subjectPower
dc.subjectSmart Griden_US
dc.subjectAllocation
dc.subjectDistributed generationen_US
dc.subjectWind
dc.subjectRenewable energyen_US
dc.subjectReanalysis
dc.subjectEnergy storageen_US
dc.subjectOperation
dc.subjectMulti-objective optimizationen_US
dc.titleA Multi-Objective Optimization Evaluation Framework for Integration of Distributed Energy Resourcesen_US
dc.typeArticleen_US
dspace.entity.typePublication
relation.isAuthorOfPublicationb80c3194-906c-4e78-a54c-e3cd1effc970
relation.isAuthorOfPublication.latestForDiscoveryb80c3194-906c-4e78-a54c-e3cd1effc970

Files