A New a Flow-Based Approach for Enhancing Botnet Detection Using Convolutional Neural Network and Long Short-Term Memory

dc.contributor.author Asadi, Mehdi
dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.date.accessioned 2025-05-15T18:39:28Z
dc.date.available 2025-05-15T18:39:28Z
dc.date.issued 2025
dc.description Heidari, Arash/0000-0003-4279-8551 en_US
dc.description.abstract Despite the growing research and development of botnet detection tools, an ever-increasing spread of botnets and their victims is being witnessed. Due to the frequent adaptation of botnets to evolving responses offered by host-based and network-based detection mechanisms, traditional methods are found to lack adequate defense against botnet threats. In this regard, the suggestion is made to employ flow-based detection methods and conduct behavioral analysis of network traffic. To enhance the performance of these approaches, this paper proposes utilizing a hybrid deep learning method that combines convolutional neural network (CNN) and long short-term memory (LSTM) methods. CNN efficiently extracts spatial features from network traffic, such as patterns in flow characteristics, while LSTM captures temporal dependencies critical to detecting sequential patterns in botnet behaviors. Experimental results reveal the effectiveness of the proposed CNN-LSTM method in classifying botnet traffic. In comparison with the results obtained by the leading method on the identical dataset, the proposed approach showcased noteworthy enhancements, including a 0.61% increase in precision, a 0.03% augmentation in accuracy, a 0.42% enhancement in the recall, a 0.51% improvement in the F1-score, and a 0.10% reduction in the false-positive rate. Moreover, the utilization of the CNN-LSTM framework exhibited robust overall performance and notable expeditiousness in the realm of botnet traffic identification. Additionally, we conducted an evaluation concerning the impact of three widely recognized adversarial attacks on the Information Security Centre of Excellence dataset and the Information Security and Object Technology dataset. The findings underscored the proposed method's propensity for delivering a promising performance in the face of these adversarial challenges. en_US
dc.description.sponsorship Qatar National Library en_US
dc.description.sponsorship Open Access funding provided by the Qatar National Library. en_US
dc.identifier.doi 10.1007/s10115-025-02410-9
dc.identifier.issn 0219-1377
dc.identifier.issn 0219-3116
dc.identifier.scopus 2-s2.0-105002725576
dc.identifier.uri https://doi.org/10.1007/s10115-025-02410-9
dc.identifier.uri https://hdl.handle.net/20.500.12469/7320
dc.language.iso en en_US
dc.publisher Springer London Ltd en_US
dc.relation.ispartof Knowledge and Information Systems
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Botnet Detection en_US
dc.subject Deep Learning en_US
dc.subject Long Short-Term Memory en_US
dc.subject Convolutional Neural Network en_US
dc.subject Adversarial Attacks en_US
dc.title A New a Flow-Based Approach for Enhancing Botnet Detection Using Convolutional Neural Network and Long Short-Term Memory en_US
dc.type Article en_US
dspace.entity.type Publication
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.scopusid 57213672464
gdc.author.scopusid 57217424609
gdc.author.scopusid 55897274300
gdc.author.wosid Asadi, Mehdi/N-8311-2019
gdc.author.wosid Heidari, Arash/Aak-9761-2021
gdc.author.wosid Jafari Navimipour, Nima/Aaf-5662-2021
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.collaboration.industrial false
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Asadi, Mehdi] Islamic Azad Univ, Dept Comp Engn, Khameneh Branch, Khameneh, Iran; [Heidari, Arash] Halic Univ, Dept Software Engn, TR-34060 Istanbul, Turkiye; [Heidari, Arash] Istanbul Atlas Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Heidari, Arash] Qatar Univ, Dept Comp Sci & Engn, Doha, Qatar; Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Yunlin, Taiwan; Western Caspian Univ, Res Ctr High Technol & Innovat Engn, Baku, Azerbaijan en_US
gdc.description.endpage 6170
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
gdc.description.scopusquality Q2
gdc.description.startpage 6139
gdc.description.volume 67
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4409488272
gdc.identifier.wos WOS:001468242000001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 10.0
gdc.oaire.influence 3.3328955E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.1971825E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 82.6403851
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.mendeley 20
gdc.plumx.scopuscites 10
gdc.scopus.citedcount 11
gdc.virtual.author Jafari Navimipour, Nima
gdc.wos.citedcount 12
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files