On List K-Coloring Convex Bipartite Graphs

gdc.relation.journal AIRO Springer Series en_US
dc.contributor.author Diaz, Josep
dc.contributor.author Diner, Öznur Yaşar
dc.contributor.author Serna, Maria
dc.contributor.author Oriol, Serra
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2021-07-17T17:27:20Z
dc.date.available 2021-07-17T17:27:20Z
dc.date.issued 2021
dc.description.abstract List k-Coloring (Lik-Col) is the decision problem asking if a given graph admits a proper coloring compatible with a given list assignment to its vertices with colors in {1, 2, …, k}. The problem is known to be NP-hard even for k = 3 within the class of 3-regular planar bipartite graphs and for k = 4 within the class of chordal bipartite graphs. In 2015 Huang, Johnson and Paulusma asked for the complexity of Li 3-Col in the class of chordal bipartite graphs. In this paper, we give a partial answer to this question by showing that Lik-Col is polynomial in the class of convex bipartite graphs. We show first that biconvex bipartite graphs admit a multichain ordering, extending the classes of graphs where a polynomial algorithm of Enright et al. (SIAM J Discrete Math 28(4):1675–1685, 2014) can be applied to the problem. We provide a dynamic programming algorithm to solve the Lik-Col in the class of convex bipartite graphs. Finally, we show how our algorithm can be modified to solve the more general LiH-Col problem on convex bipartite graphs. en_US
dc.identifier.citationcount 6
dc.identifier.doi 10.1007/978-3-030-63072-0_2 en_US
dc.identifier.issn 2523-7047 en_US
dc.identifier.issn 2523-7047
dc.identifier.scopus 2-s2.0-85104003988 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/4071
dc.language.iso en en_US
dc.publisher Springer Nature en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.subject Biconvex bipartite graphs en_US
dc.subject Convex bipartite en_US
dc.subject List coloring en_US
dc.title On List K-Coloring Convex Bipartite Graphs en_US
dc.type Book Part en_US
dspace.entity.type Publication
gdc.author.institutional Diner, Özgür Yaşar en_US
gdc.author.institutional Yaşar Diner, Öznur
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::book::book part
gdc.description.endpage 26 en_US
gdc.description.publicationcategory Kitap Bölümü - Uluslararası en_US
gdc.description.startpage 15 en_US
gdc.description.volume 5 en_US
gdc.identifier.openalex W3144592529
gdc.oaire.diamondjournal false
gdc.oaire.downloads 104
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.939367E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Discrete Mathematics (cs.DM)
gdc.oaire.keywords Grafs, Teoria de
gdc.oaire.keywords Convex bipartite
gdc.oaire.keywords Computational Complexity (cs.CC)
gdc.oaire.keywords Biconvex bipartite graphs
gdc.oaire.keywords List coloring
gdc.oaire.keywords Graph theory
gdc.oaire.keywords Computer Science - Computational Complexity
gdc.oaire.keywords :Informàtica::Informàtica teòrica [Àrees temàtiques de la UPC]
gdc.oaire.keywords FOS: Mathematics
gdc.oaire.keywords Mathematics - Combinatorics
gdc.oaire.keywords Combinatorics (math.CO)
gdc.oaire.keywords Àrees temàtiques de la UPC::Informàtica::Informàtica teòrica
gdc.oaire.keywords Computer Science - Discrete Mathematics
gdc.oaire.popularity 4.44898E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0102 computer and information sciences
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.views 35
gdc.openalex.fwci 3.151
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 4
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 7
gdc.scopus.citedcount 7
relation.isAuthorOfPublication 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isAuthorOfPublication.latestForDiscovery 84ac79d3-823a-4abf-9b15-e1383ec8a9f5
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files