Hourly Electricity Demand Forecasting Using Fourier Analysis With Feedback

dc.contributor.author Yükseltan, Ergün
dc.contributor.author Bilge, Ayşe Hümeyra
dc.contributor.author Yücekaya, Ahmet
dc.contributor.author Yücekaya, Ahmet Deniz
dc.contributor.author Bilge, Ayşe Humeyra
dc.contributor.other Industrial Engineering
dc.date.accessioned 2020-11-30T14:29:53Z
dc.date.available 2020-11-30T14:29:53Z
dc.date.issued 2020
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Endüstri Mühendisliği Bölümü en_US
dc.description.abstract Whether it be long-term, like year-ahead, or short-term, such as hour-ahead or day-ahead, forecasting of electricity demand is crucial for the success of deregulated electricity markets. The stochastic nature of the demand for electricity, along with parameters such as temperature, humidity, and work habits, eventually causes deviations from expected demand. In this paper, we propose a feedback-based forecasting methodology in which the hourly prediction by a Fourier series expansion is updated by using the error at the current hour for the forecast at the next hour. The proposed methodology is applied to the Turkish power market for the period 2012-2017 and provides a powerful tool to forecasts the demand in hourly, daily and yearly horizons using only the past demand data. The hourly forecasting errors in the demand, in the Mean Absolute Percentage Error (MAPE) norm, are 0.87% in hour-ahead, 2.90% in day-ahead, and 3.54% in year-ahead horizons, respectively. An autoregressive (AR) model is also applied to the predictions by the Fourier series expansion to obtain slightly better results. As predictions are updated on an hourly basis using the already realized data for the current hour, the model can be considered as reliable and practical in circumstances needed to make bidding and dispatching decisions. en_US
dc.description.sponsorship Kadir Has University en_US
dc.identifier.citationcount 28
dc.identifier.doi 10.1016/j.esr.2020.100524 en_US
dc.identifier.issn 2211-467X en_US
dc.identifier.issn 2211-4688 en_US
dc.identifier.issn 2211-467X
dc.identifier.issn 2211-4688
dc.identifier.scopus 2-s2.0-85088146777 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://hdl.handle.net/20.500.12469/3493
dc.identifier.uri https://doi.org/10.1016/j.esr.2020.100524
dc.identifier.volume 31 en_US
dc.identifier.wos WOS:000572977900001 en_US
dc.identifier.wosquality Q2
dc.institutionauthor Yükseltan, Ergün en_US
dc.institutionauthor Yücekaya, Ahmet en_US
dc.institutionauthor Bilge, Ayşe Hümeyra en_US
dc.language.iso en en_US
dc.publisher Elsevıer en_US
dc.relation.journal Energy Strategy Revıews en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 46
dc.subject Time series analysis en_US
dc.subject Prediction en_US
dc.subject Forecast en_US
dc.subject Fourier series en_US
dc.subject Modulation en_US
dc.subject Feedback en_US
dc.title Hourly Electricity Demand Forecasting Using Fourier Analysis With Feedback en_US
dc.type Article en_US
dc.wos.citedbyCount 39
dspace.entity.type Publication
relation.isAuthorOfPublication 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isAuthorOfPublication 5eb0a05e-38c7-4571-847a-8c1883879f97
relation.isAuthorOfPublication.latestForDiscovery 1b50a6b2-7290-44da-b8d5-f048fea8b315
relation.isOrgUnitOfPublication 28868d0c-e9a4-4de1-822f-c8df06d2086a
relation.isOrgUnitOfPublication.latestForDiscovery 28868d0c-e9a4-4de1-822f-c8df06d2086a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Hourly electricity demand forecasting using Fourier analysis with feedback.pdf
Size:
8.55 MB
Format:
Adobe Portable Document Format
Description: