A Data Science Perspective on Global Trends in Energy Production

dc.authorscopusid 59491600300
dc.authorscopusid 55364564400
dc.authorscopusid 6506505859
dc.contributor.author Arsan, Taner
dc.contributor.author Alsan, H.F.
dc.contributor.author Arsan, T.
dc.contributor.other Computer Engineering
dc.date.accessioned 2025-01-15T21:38:21Z
dc.date.available 2025-01-15T21:38:21Z
dc.date.issued 2024
dc.department Kadir Has University en_US
dc.department-temp Hatira N., Electronics Engineering Department, Kadir Has University, Istanbul, Turkey; Alsan H.F., Computer Engineering Department, Kadir Has University, Istanbul, Turkey; Arsan T., Computer Engineering Department, Kadir Has University, Istanbul, Turkey en_US
dc.description IEEE SMC; IEEE Turkiye Section en_US
dc.description.abstract As global demand for energy continues to rise, understanding the trends and dynamics of energy generation is crucial to ensure a sustainable and efficient energy future. This study employs data science techniques to analyze global energy production data from 48 countries spanning 2010 to 2023. Initially, we use clustering methods to categorize countries based on their energy production profiles into three distinct groups: high, medium, and low production. This clustering provides insights into the diverse energy strategies and capacities across different regions. Subsequently, we apply and compare two classification models, specifically Random Forest and Gradient Boosting, to predict the dominant energy source for each cluster. Furthermore, we perform a comparative analysis of two forecasting models, SARIMA and Prophet, to predict future renewable energy production for countries with high production profiles, such as the USA and China. The forecasting results show the efficacy of these models in capturing seasonal trends and providing accurate predictions. © 2024 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/ASYU62119.2024.10757109
dc.identifier.isbn 979-835037943-3
dc.identifier.scopus 2-s2.0-85213316363
dc.identifier.scopusquality N/A
dc.identifier.uri https://doi.org/10.1109/ASYU62119.2024.10757109
dc.identifier.uri https://hdl.handle.net/20.500.12469/7138
dc.identifier.wosquality N/A
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562 en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Classification en_US
dc.subject Clustering en_US
dc.subject Data Science en_US
dc.subject Electricity Production en_US
dc.subject Forecasting en_US
dc.subject Machine Learning en_US
dc.subject Prophet en_US
dc.subject Renewable Energy en_US
dc.subject Sarima en_US
dc.title A Data Science Perspective on Global Trends in Energy Production en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery 7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files