A Data Science Perspective on Global Trends in Energy Production

dc.authorscopusid59491600300
dc.authorscopusid55364564400
dc.authorscopusid6506505859
dc.contributor.authorHatira, N.
dc.contributor.authorAlsan, H.F.
dc.contributor.authorArsan, T.
dc.date.accessioned2025-01-15T21:38:21Z
dc.date.available2025-01-15T21:38:21Z
dc.date.issued2024
dc.departmentKadir Has Universityen_US
dc.department-tempHatira N., Electronics Engineering Department, Kadir Has University, Istanbul, Turkey; Alsan H.F., Computer Engineering Department, Kadir Has University, Istanbul, Turkey; Arsan T., Computer Engineering Department, Kadir Has University, Istanbul, Turkeyen_US
dc.descriptionIEEE SMC; IEEE Turkiye Sectionen_US
dc.description.abstractAs global demand for energy continues to rise, understanding the trends and dynamics of energy generation is crucial to ensure a sustainable and efficient energy future. This study employs data science techniques to analyze global energy production data from 48 countries spanning 2010 to 2023. Initially, we use clustering methods to categorize countries based on their energy production profiles into three distinct groups: high, medium, and low production. This clustering provides insights into the diverse energy strategies and capacities across different regions. Subsequently, we apply and compare two classification models, specifically Random Forest and Gradient Boosting, to predict the dominant energy source for each cluster. Furthermore, we perform a comparative analysis of two forecasting models, SARIMA and Prophet, to predict future renewable energy production for countries with high production profiles, such as the USA and China. The forecasting results show the efficacy of these models in capturing seasonal trends and providing accurate predictions. © 2024 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/ASYU62119.2024.10757109
dc.identifier.isbn979-835037943-3
dc.identifier.scopus2-s2.0-85213316363
dc.identifier.scopusqualityN/A
dc.identifier.urihttps://doi.org/10.1109/ASYU62119.2024.10757109
dc.identifier.urihttps://hdl.handle.net/20.500.12469/7138
dc.identifier.wosqualityN/A
dc.institutionauthorArsan, Taner
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 2024 Innovations in Intelligent Systems and Applications Conference, ASYU 2024 -- 16 October 2024 through 18 October 2024 -- Ankara -- 204562en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectClassificationen_US
dc.subjectClusteringen_US
dc.subjectData Scienceen_US
dc.subjectElectricity Productionen_US
dc.subjectForecastingen_US
dc.subjectMachine Learningen_US
dc.subjectPropheten_US
dc.subjectRenewable Energyen_US
dc.subjectSarimaen_US
dc.titleA Data Science Perspective on Global Trends in Energy Productionen_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication7959ea6c-1b30-4fa0-9c40-6311259c0914
relation.isAuthorOfPublication.latestForDiscovery7959ea6c-1b30-4fa0-9c40-6311259c0914

Files