Motion Control for Biohybrid Multiscale Robots
| gdc.relation.journal | 2020 Innovations in Intelligent Systems and Applications Conference | en_US |
| dc.contributor.author | Tabak, Ahmet Fatih | |
| dc.contributor.other | Mechatronics Engineering | |
| dc.contributor.other | 05. Faculty of Engineering and Natural Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2021-01-28T10:19:57Z | |
| dc.date.available | 2021-01-28T10:19:57Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Complex gaits of microswimmer robotic devices could be controlled via discretized reference signals and adaptive control scheme. A biomedical micro-robotic system offers a nontrivial control problem without tactile contact or tether. Moreover, such devices can incorporate live cells to achieve biocompatibility for therapeutic applications introducing additional complexity to the system dynamics and control effort. Additionally, a coupled hybrid system of a macroscale open kinematic chain and a self-propelling bacterium cell constitutes a multiscale hybrid system that can be used for medical applications of different sorts. In this study, the performance of a system of aforementioned qualities is investigated with an adaptive control strategy under in vitro conditions. Results demonstrate that the control method of choice offers a promising approach to the described scenario. | en_US |
| dc.identifier.citationcount | 0 | |
| dc.identifier.doi | 10.1109/ASYU50717.2020.9259857 | en_US |
| dc.identifier.isbn | 9781728191362 | |
| dc.identifier.scopus | 2-s2.0-85097924380 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/3764 | |
| dc.identifier.uri | https://doi.org/10.1109/ASYU50717.2020.9259857 | |
| dc.language.iso | en | en_US |
| dc.publisher | IEEE | en_US |
| dc.relation.ispartof | 2020 Innovations in Intelligent Systems and Applications Conference (ASYU) | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Adaptive control | en_US |
| dc.subject | Biohybrid robotics | en_US |
| dc.subject | Biomedical engineering | en_US |
| dc.subject | Microsystems | en_US |
| dc.subject | Numerical simulation | en_US |
| dc.title | Motion Control for Biohybrid Multiscale Robots | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Tabak, Ahmet Fatih | en_US |
| gdc.author.institutional | Tabak, Ahmet Fatih | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.endpage | 5 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 1 | |
| gdc.identifier.openalex | W3106866263 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.6180564E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Biohybrid robotics | |
| gdc.oaire.keywords | Adaptive control | |
| gdc.oaire.keywords | Microsystems | |
| gdc.oaire.keywords | Numerical simulation | |
| gdc.oaire.keywords | Biomedical engineering | |
| gdc.oaire.popularity | 2.571375E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.fwci | 0.4 | |
| gdc.openalex.normalizedpercentile | 0.37 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 2 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.scopus.citedcount | 0 | |
| relation.isAuthorOfPublication | 3d30911f-40a8-4afa-bc8c-216b9b699b9c | |
| relation.isAuthorOfPublication.latestForDiscovery | 3d30911f-40a8-4afa-bc8c-216b9b699b9c | |
| relation.isOrgUnitOfPublication | 01f3d407-6823-4ad3-8298-0b6a2a6e5cff | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 01f3d407-6823-4ad3-8298-0b6a2a6e5cff |