Everything You Wanted To Know About Chatgpt: Components, Capabilities, Applications, and Opportunities

dc.contributor.author Heidari, Arash
dc.contributor.author Navimipour, Nima Jafari
dc.contributor.author Zeadally, Sherali
dc.contributor.author Chamola, Vinay
dc.date.accessioned 2024-06-23T21:37:44Z
dc.date.available 2024-06-23T21:37:44Z
dc.date.issued 2024
dc.description Heidari, Arash/0000-0003-4279-8551 en_US
dc.description.abstract Conversational Artificial Intelligence (AI) and Natural Language Processing have advanced significantly with the creation of a Generative Pre-trained Transformer (ChatGPT) by OpenAI. ChatGPT uses deep learning techniques like transformer architecture and self-attention mechanisms to replicate human speech and provide coherent and appropriate replies to the situation. The model mainly depends on the patterns discovered in the training data, which might result in incorrect or illogical conclusions. In the context of open-domain chats, we investigate the components, capabilities constraints, and potential applications of ChatGPT along with future opportunities. We begin by describing the components of ChatGPT followed by a definition of chatbots. We present a new taxonomy to classify them. Our taxonomy includes rule-based chatbots, retrieval-based chatbots, generative chatbots, and hybrid chatbots. Next, we describe the capabilities and constraints of ChatGPT. Finally, we present potential applications of ChatGPT and future research opportunities. The results showed that ChatGPT, a transformer-based chatbot model, utilizes encoders to produce coherent responses. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1002/itl2.530
dc.identifier.issn 2476-1508
dc.identifier.scopus 2-s2.0-85194725891
dc.identifier.uri https://doi.org/10.1002/itl2.530
dc.identifier.uri https://hdl.handle.net/20.500.12469/5740
dc.language.iso en en_US
dc.publisher John Wiley & Sons Ltd en_US
dc.relation.ispartof Internet Technology Letters
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject ChatGPT en_US
dc.subject conversational artificial intelligence en_US
dc.subject deep learning en_US
dc.subject generative pre-trained transformer en_US
dc.subject large language models en_US
dc.subject natural language processing en_US
dc.subject self-attention mechanisms en_US
dc.title Everything You Wanted To Know About Chatgpt: Components, Capabilities, Applications, and Opportunities en_US
dspace.entity.type Publication
gdc.author.id Heidari, Arash/0000-0003-4279-8551
gdc.author.institutional Jafari Navimipour, Nima
gdc.author.scopusid 57217424609
gdc.author.scopusid 59125628000
gdc.author.scopusid 7003472739
gdc.author.scopusid 55427784900
gdc.author.wosid Heidari, Arash/AAK-9761-2021
gdc.bip.impulseclass C3
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Heidari, Arash] Halic Univ, Dept Software Engn, Istanbul, Turkiye; [Heidari, Arash] Istanbul Atlas Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-34083 Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Taiwan; [Zeadally, Sherali] Univ Kentucky, Coll Commun & Informat, Lexington, KY USA; [Chamola, Vinay] Birla Inst Technol & Sci BITS, Pilani, India en_US
gdc.description.publicationcategory Diğer en_US
gdc.description.scopusquality Q3
gdc.description.volume 7
gdc.identifier.openalex W4399248247
gdc.identifier.wos WOS:001235765500001
gdc.oaire.diamondjournal false
gdc.oaire.impulse 38.0
gdc.oaire.influence 4.5422475E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 1.4090901E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 6.44
gdc.openalex.normalizedpercentile 1.0
gdc.openalex.toppercent TOP 1%
gdc.opencitations.count 0
gdc.plumx.crossrefcites 11
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 44
gdc.scopus.citedcount 45
gdc.wos.citedcount 40
relation.isAuthorOfPublication 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isAuthorOfPublication.latestForDiscovery 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files