Everything You Wanted To Know About Chatgpt: Components, Capabilities, Applications, and Opportunities
| dc.contributor.author | Heidari, Arash | |
| dc.contributor.author | Navimipour, Nima Jafari | |
| dc.contributor.author | Zeadally, Sherali | |
| dc.contributor.author | Chamola, Vinay | |
| dc.date.accessioned | 2024-06-23T21:37:44Z | |
| dc.date.available | 2024-06-23T21:37:44Z | |
| dc.date.issued | 2024 | |
| dc.description | Heidari, Arash/0000-0003-4279-8551 | en_US |
| dc.description.abstract | Conversational Artificial Intelligence (AI) and Natural Language Processing have advanced significantly with the creation of a Generative Pre-trained Transformer (ChatGPT) by OpenAI. ChatGPT uses deep learning techniques like transformer architecture and self-attention mechanisms to replicate human speech and provide coherent and appropriate replies to the situation. The model mainly depends on the patterns discovered in the training data, which might result in incorrect or illogical conclusions. In the context of open-domain chats, we investigate the components, capabilities constraints, and potential applications of ChatGPT along with future opportunities. We begin by describing the components of ChatGPT followed by a definition of chatbots. We present a new taxonomy to classify them. Our taxonomy includes rule-based chatbots, retrieval-based chatbots, generative chatbots, and hybrid chatbots. Next, we describe the capabilities and constraints of ChatGPT. Finally, we present potential applications of ChatGPT and future research opportunities. The results showed that ChatGPT, a transformer-based chatbot model, utilizes encoders to produce coherent responses. | en_US |
| dc.identifier.citationcount | 0 | |
| dc.identifier.doi | 10.1002/itl2.530 | |
| dc.identifier.issn | 2476-1508 | |
| dc.identifier.scopus | 2-s2.0-85194725891 | |
| dc.identifier.uri | https://doi.org/10.1002/itl2.530 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/5740 | |
| dc.language.iso | en | en_US |
| dc.publisher | John Wiley & Sons Ltd | en_US |
| dc.relation.ispartof | Internet Technology Letters | |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | ChatGPT | en_US |
| dc.subject | conversational artificial intelligence | en_US |
| dc.subject | deep learning | en_US |
| dc.subject | generative pre-trained transformer | en_US |
| dc.subject | large language models | en_US |
| dc.subject | natural language processing | en_US |
| dc.subject | self-attention mechanisms | en_US |
| dc.title | Everything You Wanted To Know About Chatgpt: Components, Capabilities, Applications, and Opportunities | en_US |
| dspace.entity.type | Publication | |
| gdc.author.id | Heidari, Arash/0000-0003-4279-8551 | |
| gdc.author.institutional | Jafari Navimipour, Nima | |
| gdc.author.scopusid | 57217424609 | |
| gdc.author.scopusid | 59125628000 | |
| gdc.author.scopusid | 7003472739 | |
| gdc.author.scopusid | 55427784900 | |
| gdc.author.wosid | Heidari, Arash/AAK-9761-2021 | |
| gdc.bip.impulseclass | C3 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | metadata only access | |
| gdc.description.department | Kadir Has University | en_US |
| gdc.description.departmenttemp | [Heidari, Arash] Halic Univ, Dept Software Engn, Istanbul, Turkiye; [Heidari, Arash] Istanbul Atlas Univ, Fac Engn & Nat Sci, Dept Comp Engn, Istanbul, Turkiye; [Navimipour, Nima Jafari] Kadir Has Univ, Fac Engn & Nat Sci, Dept Comp Engn, TR-34083 Istanbul, Turkiye; [Navimipour, Nima Jafari] Natl Yunlin Univ Sci & Technol, Future Technol Res Ctr, Touliu, Taiwan; [Zeadally, Sherali] Univ Kentucky, Coll Commun & Informat, Lexington, KY USA; [Chamola, Vinay] Birla Inst Technol & Sci BITS, Pilani, India | en_US |
| gdc.description.publicationcategory | Diğer | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.volume | 7 | |
| gdc.identifier.openalex | W4399248247 | |
| gdc.identifier.wos | WOS:001235765500001 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 38.0 | |
| gdc.oaire.influence | 4.5422475E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 1.4090901E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0206 medical engineering | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.fwci | 6.44 | |
| gdc.openalex.normalizedpercentile | 1.0 | |
| gdc.openalex.toppercent | TOP 1% | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.crossrefcites | 11 | |
| gdc.plumx.mendeley | 15 | |
| gdc.plumx.scopuscites | 44 | |
| gdc.scopus.citedcount | 45 | |
| gdc.wos.citedcount | 40 | |
| relation.isAuthorOfPublication | 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e | |
| relation.isAuthorOfPublication.latestForDiscovery | 0fb3c7a0-c005-4e5f-a9ae-bb163df2df8e | |
| relation.isOrgUnitOfPublication | fd8e65fe-c3b3-4435-9682-6cccb638779c | |
| relation.isOrgUnitOfPublication | 2457b9b3-3a3f-4c17-8674-7f874f030d96 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | fd8e65fe-c3b3-4435-9682-6cccb638779c |