Human Dopamine Transporter: the First Implementation of a Combined in Silico/In Vitro Approach Revealing the Substrate and Inhibitor Specificities

dc.contributor.author Djikic, Teodora
dc.contributor.author Marti, Yasmina
dc.contributor.author Spyrakis, Francesca
dc.contributor.author Lau, Thorsten
dc.contributor.author Benedetti, Paolo
dc.contributor.author Davey, Gavin
dc.contributor.author Schloss, Patrick
dc.contributor.author Yelekçi, Kemal
dc.date.accessioned 2019-06-27T08:02:18Z
dc.date.available 2019-06-27T08:02:18Z
dc.date.issued 2019
dc.department Fakülteler, Mühendislik ve Doğa Bilimleri Fakültesi, Biyoinformatik ve Genetik Bölümü en_US
dc.description.abstract Parkinson's disease (PD) is characterized by the loss of dopamine-generating neurons in the substantia nigra and corpus striatum. Current treatments alleviate PD symptoms rather than exerting neuroprotective effect on dopaminergic neurons. New drugs targeting the dopaminergic neurons by specific uptake through the human dopamine transporter (hDAT) could represent a viable strategy for establishing selective neuroprotection. Molecules able to increase the bioactive amount of extracellular dopamine thereby enhancing and compensating a loss of dopaminergic neurotransmission and to exert neuroprotective response because of their accumulation in the cytoplasm are required. By means of homology modeling molecular docking and molecular dynamics simulations we have generated 3D structure models of hDAT in complex with substrate and inhibitors. Our results clearly reveal differences in binding affinity of these compounds to the hDAT in the open and closed conformations critical for future drug design. The established in silico approach allowed the identification of promising substrate compounds that were subsequently analyzed for their efficiency in inhibiting hDAT-dependent fluorescent substrate uptake through in vitro live cell imaging experiments. Taken together our work presents the first implementation of a combined in silico/in vitro approach enabling the selection of promising dopaminergic neuron-specific substrates. en_US]
dc.identifier.citationcount 7
dc.identifier.doi 10.1080/07391102.2018.1426044 en_US
dc.identifier.endpage 306
dc.identifier.issn 0739-1102 en_US
dc.identifier.issn 1538-0254 en_US
dc.identifier.issn 0739-1102
dc.identifier.issn 1538-0254
dc.identifier.issue 2
dc.identifier.pmid 29334320 en_US
dc.identifier.scopus 2-s2.0-85041109188 en_US
dc.identifier.scopusquality Q2
dc.identifier.startpage 291 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/593
dc.identifier.uri https://doi.org/10.1080/07391102.2018.1426044
dc.identifier.volume 37 en_US
dc.identifier.wos WOS:000459906900003 en_US
dc.institutionauthor Djikic, Teodora en_US
dc.institutionauthor Yelekçi, Kemal en_US
dc.language.iso en en_US
dc.publisher Taylor & Francis Inc en_US
dc.relation.journal Journal of Biomolecular Structure and Dynamics en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 9
dc.subject DAT en_US
dc.subject Substrates en_US
dc.subject Neuroprotection en_US
dc.subject Virtual screening en_US
dc.subject Molecular modeling en_US
dc.title Human Dopamine Transporter: the First Implementation of a Combined in Silico/In Vitro Approach Revealing the Substrate and Inhibitor Specificities en_US
dc.type Article en_US
dc.wos.citedbyCount 8
dspace.entity.type Publication

Files