Classification of Adhd Using Ensemble Algorithms With Deep Learning and Hand Crafted Features

dc.authorscopusid 57211992616
dc.authorscopusid 57211991195
dc.authorscopusid 35617283100
dc.contributor.author Cicek, G.
dc.contributor.author Çevik, Mesut
dc.contributor.author Cevik, M.
dc.contributor.author Akan, A.
dc.contributor.other Computer Engineering
dc.date.accessioned 2023-10-19T15:05:32Z
dc.date.available 2023-10-19T15:05:32Z
dc.date.issued 2019
dc.department-temp Cicek, G., IÜ-CerrahpaşaBeykent Üniversitesi, Biyomedikal Yazilim Muhendisli?i Bölümü, Istanbul, Turkey; Cevik, M., Kadir Has Üniversitesi, Mekatronik Mühendisli?i Bölümü, Istanbul, Turkey; Akan, A., Izmir Katip Çelebi Üniversitesi, Biyomedikal Mühendisli?i Bölümü, Izmir, Turkey en_US
dc.description 2019 Medical Technologies Congress, TIPTEKNO 2019 --3 October 2019 through 5 October 2019 -- --154293 en_US
dc.description.abstract Attention Deficit Hyperactivity (ADHD) is a common neurodevelopmental disorder that typically appears in early childhood. Methods developed for diagnosing gives different results at different times. This is a major obstacle in the diagnosis of disease. Diagnosis model of ADHD must be unique, objective, and reliable. In this study, comparative evaluations of both manual and deep features for classification of structural magnetic resonance images is presented. For this purpose, datasets of NPIstanbul Neuropsychiatry Hospital and public datasets of ADHD-200 is used. In order to characterize MRI images First Order, Second Order statictical features and the Alexnet architecture is used. Images are classified with the ensemble algorithm. In order to determine classification performance, accuracy, sensitivity, specificity, tp rate, fp rate and F-measure values are taken into consideration. It was observed that the combination of three manually extracted data sets yielded more successful results in characterizing the data. © 2019 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/TIPTEKNO.2019.8895197 en_US
dc.identifier.isbn 9781728124209
dc.identifier.scopus 2-s2.0-85075619561 en_US
dc.identifier.uri https://doi.org/10.1109/TIPTEKNO.2019.8895197
dc.identifier.uri https://hdl.handle.net/20.500.12469/4937
dc.khas 20231019-Scopus en_US
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof TIPTEKNO 2019 - Tip Teknolojileri Kongresi en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.scopus.citedbyCount 0
dc.subject Alexnet en_US
dc.subject Attention deficit hyperactivity disorder en_US
dc.subject Convolutional neural network en_US
dc.subject Hand crafted and automated features en_US
dc.subject Biomedical engineering en_US
dc.subject Diagnosis en_US
dc.subject Magnetic resonance en_US
dc.subject Magnetic resonance imaging en_US
dc.subject Neural networks en_US
dc.subject Alexnet en_US
dc.subject Attention deficit hyperactivity en_US
dc.subject Attention deficit hyperactivity disorder en_US
dc.subject Automated features en_US
dc.subject Classification performance en_US
dc.subject Comparative evaluations en_US
dc.subject Convolutional neural network en_US
dc.subject Ensemble algorithms en_US
dc.subject Deep learning en_US
dc.title Classification of Adhd Using Ensemble Algorithms With Deep Learning and Hand Crafted Features en_US
dc.title.alternative Derin Ö?renme ve Manuel Öznitelik Çikarma Yöntemleri ile Topluluk Algoritmalari Kullanarak Dehb'nin Siniflandirilmasi en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication ec2e889c-a1fd-4450-b390-0d40964c10e2
relation.isAuthorOfPublication.latestForDiscovery ec2e889c-a1fd-4450-b390-0d40964c10e2
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4938.pdf
Size:
460.72 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text