Classification of Adhd Using Ensemble Algorithms With Deep Learning and Hand Crafted Features

dc.authorscopusid57211992616
dc.authorscopusid57211991195
dc.authorscopusid35617283100
dc.contributor.authorCicek, G.
dc.contributor.authorCevik, M.
dc.contributor.authorAkan, A.
dc.date.accessioned2023-10-19T15:05:32Z
dc.date.available2023-10-19T15:05:32Z
dc.date.issued2019
dc.department-tempCicek, G., IÜ-CerrahpaşaBeykent Üniversitesi, Biyomedikal Yazilim Muhendisli?i Bölümü, Istanbul, Turkey; Cevik, M., Kadir Has Üniversitesi, Mekatronik Mühendisli?i Bölümü, Istanbul, Turkey; Akan, A., Izmir Katip Çelebi Üniversitesi, Biyomedikal Mühendisli?i Bölümü, Izmir, Turkeyen_US
dc.description2019 Medical Technologies Congress, TIPTEKNO 2019 --3 October 2019 through 5 October 2019 -- --154293en_US
dc.description.abstractAttention Deficit Hyperactivity (ADHD) is a common neurodevelopmental disorder that typically appears in early childhood. Methods developed for diagnosing gives different results at different times. This is a major obstacle in the diagnosis of disease. Diagnosis model of ADHD must be unique, objective, and reliable. In this study, comparative evaluations of both manual and deep features for classification of structural magnetic resonance images is presented. For this purpose, datasets of NPIstanbul Neuropsychiatry Hospital and public datasets of ADHD-200 is used. In order to characterize MRI images First Order, Second Order statictical features and the Alexnet architecture is used. Images are classified with the ensemble algorithm. In order to determine classification performance, accuracy, sensitivity, specificity, tp rate, fp rate and F-measure values are taken into consideration. It was observed that the combination of three manually extracted data sets yielded more successful results in characterizing the data. © 2019 IEEE.en_US
dc.identifier.citation0
dc.identifier.doi10.1109/TIPTEKNO.2019.8895197en_US
dc.identifier.isbn9781728124209
dc.identifier.scopus2-s2.0-85075619561en_US
dc.identifier.urihttps://doi.org/10.1109/TIPTEKNO.2019.8895197
dc.identifier.urihttps://hdl.handle.net/20.500.12469/4937
dc.institutionauthorÇevik, Mesut
dc.khas20231019-Scopusen_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartofTIPTEKNO 2019 - Tip Teknolojileri Kongresien_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectAlexneten_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectConvolutional neural networken_US
dc.subjectHand crafted and automated featuresen_US
dc.subjectBiomedical engineeringen_US
dc.subjectDiagnosisen_US
dc.subjectMagnetic resonanceen_US
dc.subjectMagnetic resonance imagingen_US
dc.subjectNeural networksen_US
dc.subjectAlexneten_US
dc.subjectAttention deficit hyperactivityen_US
dc.subjectAttention deficit hyperactivity disorderen_US
dc.subjectAutomated featuresen_US
dc.subjectClassification performanceen_US
dc.subjectComparative evaluationsen_US
dc.subjectConvolutional neural networken_US
dc.subjectEnsemble algorithmsen_US
dc.subjectDeep learningen_US
dc.titleClassification of Adhd Using Ensemble Algorithms With Deep Learning and Hand Crafted Featuresen_US
dc.title.alternativeDerin Ö?renme ve Manuel Öznitelik Çikarma Yöntemleri ile Topluluk Algoritmalari Kullanarak Dehb'nin Siniflandirilmasien_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublicationec2e889c-a1fd-4450-b390-0d40964c10e2
relation.isAuthorOfPublication.latestForDiscoveryec2e889c-a1fd-4450-b390-0d40964c10e2

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
4938.pdf
Size:
460.72 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text