Indoor Positioning Using Federated Kalman Filter

dc.authoridKerestecioglu, Feza/0000-0001-9722-9458;
dc.authorwosidKerestecioglu, Feza/AAF-8910-2019
dc.authorwosidAYABAKAN, TARIK/AAD-7830-2021
dc.contributor.authorKerestecioğlu, Feza
dc.contributor.authorKerestecioglu, Feza
dc.date.accessioned2023-10-19T15:11:49Z
dc.date.available2023-10-19T15:11:49Z
dc.date.issued2018
dc.department-temp[Aybakan, Tarik] Istanbul Naval Shipyard, Underwater Syst Div, Istanbul, Turkey; [Kerestecioglu, Feza] Kadir Has Univ, Dept Comp Engn, Istanbul, Turkeyen_US
dc.description3rd International Conference on Computer Science and Engineering (UBMK) -- SEP 20-23, 2018 -- Sarajevo, BOSNIA & HERCEGen_US
dc.description.abstractIn this paper, the performance of a multi-sensor fusion technique, namely Federated Kalman Filter (FKF) is studied in the context of indoor positioning problem. Kalman filters having centralized and decentralized structures are widely used in outdoor positioning and navigation applications. Global Positioning System (GI'S) is the most commonly used system for outdoor positioning/navigation, which cannot be used indoors due to the signal loss. In this study, a decentralized structure for FKF is applied in indoor positioning problem by taking its outdoor navigation performance into consideration. Simulations are perl4med with distance measurements, which are assumed to be calculated by using Received Signal Strength (RSS). Results gathered via different simulations are evaluated as promising for future studies.en_US
dc.description.sponsorshipBMBB,Istanbul Teknik Univ,Gazi Univ,ATILIM Univ,Int Univ Sarajevo,Kocaeli Univ,TURKiYE BiLiSiM VAKFIen_US
dc.identifier.citation6
dc.identifier.endpage488en_US
dc.identifier.isbn978-1-5386-7893-0
dc.identifier.scopusqualityN/A
dc.identifier.startpage483en_US
dc.identifier.urihttps://hdl.handle.net/20.500.12469/5238
dc.identifier.wosWOS:000459847400093en_US
dc.identifier.wosqualityN/A
dc.khas20231019-WoSen_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof2018 3rd International Conference on Computer Science and Engineering (Ubmk)en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectfederated Kalman filteren_US
dc.subjectdata fusionen_US
dc.subjectindoor positioningen_US
dc.titleIndoor Positioning Using Federated Kalman Filteren_US
dc.typeConference Objecten_US
dspace.entity.typePublication
relation.isAuthorOfPublication3b717ed5-ce95-4f19-b9d0-f544789c28da
relation.isAuthorOfPublication.latestForDiscovery3b717ed5-ce95-4f19-b9d0-f544789c28da

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
5238.pdf
Size:
268.71 KB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text