Holocene climate forcings and lacustrine regime shifts in the Indian summer monsoon realm

No Thumbnail Available

Date

2020

Authors

Marwan, Norbert
Eroğlu, Deniz
Goswami, Bedartha
Mishra, Praveen Kuma
Gaye, Birgit
Anoop, Akhil
Stebich, Martina
Jehangir, Arshid
Basavaiah, Nathani

Journal Title

Journal ISSN

Volume Title

Publisher

Wıley

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Organizational Units

Journal Issue

Abstract

Extreme climate events have been identified both in meteorological and long-term proxy records from the Indian summer monsoon (ISM) realm. However, the potential of palaeoclimate data for understanding mechanisms triggering climate extremes over long time scales has not been fully exploited. A distinction between proxies indicating climate change, environment, and ecosystem shift is crucial for enabling a comparison with forcing mechanisms (e.g. El-Nino Southern Oscillation). In this study we decouple these factors using data analysis techniques [multiplex recurrence network (MRN) and principal component analyses (PCA)] on multiproxy data from two lakes located in different climate regions - Lonar Lake (ISM dominated) and the high-altitude Tso Moriri Lake (ISM and westerlies influenced). Our results indicate that (i) MRN analysis, an indicator of changing environmental conditions, is associated with droughts in regions with a single climate driver but provides ambiguous results in regions with multiple climate/environmental drivers; (ii) the lacustrine ecosystem was 'less sensitive' to forcings during the early Holocene wetter periods; (iii) archives in climate zones with a single climate driver were most sensitive to regime shifts; (iv) data analyses are successful in identifying the timing of onset of climate change, and distinguishing between extrinsic and intrinsic (lacustrine) regime shifts by comparison with forcing mechanisms. Our results enable development of conceptual models to explain links between forcings and regional climate change that can be tested in climate models to provide an improved understanding of the ISM dynamics and their impact on ecosystems. (c) 2020 John Wiley & Sons, Ltd.

Description

Keywords

Last Glacıal Maxımum, TSO MORIRI LAKE, LONAR LAKE, Tıbetan Plateau, Organıc-Matter, Recent Sedıments, Nw Hımalaya, Record, Precıpıtatıon, Droughts

Turkish CoHE Thesis Center URL

Fields of Science

Citation

10

WoS Q

Q1

Scopus Q

Q1

Source

Volume

Issue

Start Page

End Page