Land Use and Land Cover Classification of Sentinel 2-A: St Petersburg Case Study

dc.contributor.author Çavur, Mahmut
dc.contributor.author Çavur, Mahmut
dc.contributor.author Düzgün, Hafize Şebnem
dc.contributor.author Kemeç, Serkan
dc.contributor.author Demirkan, Doğa Çağdaş
dc.contributor.other Management Information Systems
dc.date.accessioned 2020-12-24T12:39:02Z
dc.date.available 2020-12-24T12:39:02Z
dc.date.issued 2019
dc.department Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü en_US
dc.description.abstract Land use and land cover (LULC) maps in many areas have been used by companies, government offices, municipalities, and ministries. Accurate classification for LULC using remotely sensed data requires State of Art classification methods. The SNAP free software and ArcGIS Desktop were used for analysis and report. In this study, the optical Sentinel-2 images were used. In order to analyze the data, an object-oriented method was applied: Supported Vector Machines (SVM). An accuracy assessment is also applied to the classified results based on the ground truth points or known reference pixels. The overall classification accuracy of 83,64% with the kappa value of 0.802 was achieved using SVM. The study indicated that of SVM algorithms, the proposed framework on Sentinel-2 imagery results is satisfactory for LULC maps. en_US
dc.description.sponsorship European Commission en_US
dc.identifier.citationcount 18
dc.identifier.doi 10.5194/isprs-archives-XLII-1-W2-13-2019 en_US
dc.identifier.endpage 16 en_US
dc.identifier.issn 1682-1750 en_US
dc.identifier.issn 1682-1750
dc.identifier.issue 1/W2 en_US
dc.identifier.scopus 2-s2.0-85084985698 en_US
dc.identifier.startpage 13 en_US
dc.identifier.uri https://hdl.handle.net/20.500.12469/3652
dc.identifier.uri https://doi.org/10.5194/isprs-archives-XLII-1-W2-13-2019
dc.identifier.volume 42 en_US
dc.institutionauthor Çavur, Mahmut en_US
dc.language.iso en en_US
dc.publisher International Society for Photogrammetry and Remote Sensing en_US
dc.relation.journal International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives en_US
dc.relation.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 25
dc.subject Land use land cover en_US
dc.subject LULC en_US
dc.subject Sentinel 2A analysis en_US
dc.subject SVM en_US
dc.title Land Use and Land Cover Classification of Sentinel 2-A: St Petersburg Case Study en_US
dc.type Conference Object en_US
dspace.entity.type Publication
relation.isAuthorOfPublication 463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isAuthorOfPublication.latestForDiscovery 463fefd7-0e68-4479-ad37-0ea65fa6ae01
relation.isOrgUnitOfPublication ff62e329-217b-4857-88f0-1dae00646b8c
relation.isOrgUnitOfPublication.latestForDiscovery ff62e329-217b-4857-88f0-1dae00646b8c

Files