Numerical Solution and Distinguishability in Time Fractional Parabolic Equation
| gdc.relation.journal | Boundary Value Problems | en_US |
| dc.contributor.author | Demir, Ali | |
| dc.contributor.author | Kanca, Fatma | |
| dc.contributor.author | Ozbilge, Ebru | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2019-06-27T08:02:14Z | |
| dc.date.available | 2019-06-27T08:02:14Z | |
| dc.date.issued | 2015 | |
| dc.description.abstract | This article deals with the mathematical analysis of the inverse problem of identifying the distinguishability of input-output mappings in the linear time fractional inhomogeneous parabolic equation D(t)(alpha)u(x t) = (k(x)u(x))(x) + r(t)F(x t) 0 < alpha = 1 with mixed boundary conditions u(0 t) = psi(0)(t) u(x)(1 t) = psi(1)(t). By defining the input-output mappings Phi[center dot] : kappa -> C-1[0 T] and psi[center dot] : kappa -> C[0 T] the inverse problem is reduced to the problem of their invertibility. Hence the main purpose of this study is to investigate the distinguishability of the input-output mappings Phi[center dot] and psi[center dot]. Moreover the measured output data f (t) and h(t) can be determined analytically by a series representation which implies that the input-output mappings Phi[center dot] : kappa -> C-1[0 T] and psi[center dot] : kappa -> C[0 T] can be described explicitly where Phi[r] = k(x)u(x)(x t | en_US] |
| dc.description.abstract | r)vertical bar(x= 0) and psi[r] = u(x t | en_US] |
| dc.description.abstract | r)vertical bar(x= 1). Also numerical tests using finite difference scheme combined with an iterative method are presented. | en_US] |
| dc.identifier.citationcount | 10 | |
| dc.identifier.doi | 10.1186/s13661-015-0405-6 | en_US |
| dc.identifier.issn | 1687-2770 | en_US |
| dc.identifier.issn | 1687-2770 | |
| dc.identifier.scopus | 2-s2.0-84939187174 | en_US |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/577 | |
| dc.identifier.uri | https://doi.org/10.1186/s13661-015-0405-6 | |
| dc.language.iso | en | en_US |
| dc.publisher | Springer International Publishing Ag | en_US |
| dc.relation.ispartof | Boundary Value Problems | |
| dc.rights | info:eu-repo/semantics/openAccess | en_US |
| dc.title | Numerical Solution and Distinguishability in Time Fractional Parabolic Equation | en_US |
| dc.type | Article | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Kanca, Fatma | en_US |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Fakülteler, İşletme Fakültesi, Yönetim Bilişim Sistemleri Bölümü | en_US |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |
| gdc.description.scopusquality | Q3 | |
| gdc.description.volume | 2015 | |
| gdc.identifier.openalex | W1828580684 | |
| gdc.identifier.wos | WOS:000361550500002 | en_US |
| gdc.oaire.accesstype | GOLD | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 4.0 | |
| gdc.oaire.influence | 3.1322758E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Algebra and Number Theory | |
| gdc.oaire.keywords | N/A | |
| gdc.oaire.keywords | Analysis | |
| gdc.oaire.popularity | 3.849483E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0101 mathematics | |
| gdc.oaire.sciencefields | 01 natural sciences | |
| gdc.openalex.fwci | 1.47 | |
| gdc.openalex.normalizedpercentile | 0.79 | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 4 | |
| gdc.plumx.scopuscites | 10 | |
| gdc.scopus.citedcount | 10 | |
| gdc.wos.citedcount | 11 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b20623fc-1264-4244-9847-a4729ca7508c |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Numerical solution and distinguishability in time fractional parabolic equation.pdf
- Size:
- 1.52 MB
- Format:
- Adobe Portable Document Format
- Description: