A Recommender Model Based on Trust Value and Time Decay: Improve the Quality of Product Rating Score in E-Commerce Platforms
| dc.contributor.author | Işik,M. | |
| dc.contributor.author | Daǧ,H. | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2024-10-15T19:41:54Z | |
| dc.date.available | 2024-10-15T19:41:54Z | |
| dc.date.issued | 2017 | |
| dc.description | Cisco; Elsevier; IEEE; IEEE Computer Society; The Mit Press | en_US |
| dc.description.abstract | Most of the existing products rating score algorithms do not take fake accounts and time decay of users' ratings into account when creating the list of recommendations. The trust values and the time decay of users' ratings to an item may improve the quality of product rating score in e-commerce platforms, especially when it is thought that nowadays the majority of customers read the reviews before making a purchase. In this paper, we first introduce the concept trust value of users by explaining its mathematical definition and redefine the product rating score based on users' trust relationship. Then we calculate the product rating score based on time decay by making the concept time decay clear. After that we execute both algorithms together in order to show their both effects on the quality of product rating score. Finally, we present experimentally effectiveness of three approaches on a large real dataset. © 2017 IEEE. | en_US |
| dc.identifier.citationcount | 3 | |
| dc.identifier.doi | 10.1109/BigData.2017.8258140 | |
| dc.identifier.isbn | 978-153862714-3 | |
| dc.identifier.scopus | 2-s2.0-85041431152 | |
| dc.identifier.uri | https://doi.org/10.1109/BigData.2017.8258140 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/6484 | |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | Proceedings - 2017 IEEE International Conference on Big Data, Big Data 2017 -- 5th IEEE International Conference on Big Data, Big Data 2017 -- 11 December 2017 through 14 December 2017 -- Boston -- 134260 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Rating Score | en_US |
| dc.subject | Recommender Systems | en_US |
| dc.subject | Time Decay | en_US |
| dc.subject | Trust Rank | en_US |
| dc.title | A Recommender Model Based on Trust Value and Time Decay: Improve the Quality of Product Rating Score in E-Commerce Platforms | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.scopusid | 57202300706 | |
| gdc.author.scopusid | 6507328166 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Kadir Has University | en_US |
| gdc.description.departmenttemp | Işik M., Institute of Science and Engineering, Kadir Has University, Istanbul, Turkey; Daǧ H., Management Information Systems, Kadir Has University, Istanbul, Turkey | en_US |
| gdc.description.endpage | 1955 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 1946 | en_US |
| gdc.description.volume | 2018-January | en_US |
| gdc.identifier.openalex | W2782681200 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 2.0 | |
| gdc.oaire.influence | 2.7470581E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Rating Score | |
| gdc.oaire.keywords | Electronic commerce | |
| gdc.oaire.keywords | Score algorithm | |
| gdc.oaire.keywords | Recommender Systems | |
| gdc.oaire.keywords | Quality control | |
| gdc.oaire.keywords | Large dataset | |
| gdc.oaire.keywords | Mathematical definitions | |
| gdc.oaire.keywords | Product ratings | |
| gdc.oaire.keywords | Time Decay | |
| gdc.oaire.keywords | Trust relationship | |
| gdc.oaire.keywords | Decay (organic) | |
| gdc.oaire.keywords | Model-based OPC | |
| gdc.oaire.keywords | Recommender systems | |
| gdc.oaire.keywords | Time decay | |
| gdc.oaire.keywords | Trust Rank | |
| gdc.oaire.keywords | Quality of product | |
| gdc.oaire.popularity | 2.1406352E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.openalex.fwci | 0.539 | |
| gdc.openalex.normalizedpercentile | 0.53 | |
| gdc.opencitations.count | 1 | |
| gdc.plumx.crossrefcites | 1 | |
| gdc.plumx.mendeley | 8 | |
| gdc.plumx.scopuscites | 3 | |
| gdc.scopus.citedcount | 3 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | b20623fc-1264-4244-9847-a4729ca7508c |