Hands-On Docking With Molegro Virtual Docker

dc.contributor.author Dere, D.
dc.contributor.author Pehlivan, S.N.
dc.contributor.author da Silva, A.D.
dc.contributor.author de Azevedo Junior, W.F.
dc.date.accessioned 2025-11-15T14:47:12Z
dc.date.available 2025-11-15T14:47:12Z
dc.date.issued 2026
dc.description.abstract Molegro Virtual Docker (MVD) integrates state-of-the-art search algorithms and scoring functions dedicated to protein-ligand docking simulations. It implements differential evolution as a search engine and MolDock and Plants scores to calculate binding affinity. In this work, we describe a workflow focused on how to build regression models to predict the inhibition of cyclin-dependent kinase 2 (CDK2). We employ available structural and binding data to construct machine learning models to calculate CDK2 inhibition based on the atomic coordinates obtained through docking simulations performed with MVD. We present a hands-on approach to show how to integrate docking results and machine learning methods available at Scikit-Learn to build targeted scoring functions. Our regression models show superior predictive performance compared with classical scoring functions. All CDK2 datasets and Jupyter Notebooks discussed in this work are available at GitHub: https://github.com/azevedolab/docking#readme. We made the source code of the program SAnDReS 2.0 available at https://github.com/azevedolab/sandres. © 2025 Elsevier B.V., All rights reserved. en_US
dc.description.sponsorship Coordenação de Aperfeiçoamento de Pessoal de Nível Superior, CAPES; Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, (306298/2022-8); Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq en_US
dc.identifier.doi 10.1007/978-1-0716-4949-7_9
dc.identifier.isbn 9781597452946
dc.identifier.isbn 9781617792304
dc.identifier.isbn 9781617797668
dc.identifier.isbn 1597455741
dc.identifier.isbn 9781603272476
dc.identifier.isbn 9781597453035
dc.identifier.isbn 9781493912230
dc.identifier.isbn 9781588298645
dc.identifier.isbn 9781617793394
dc.identifier.isbn 9781617799648
dc.identifier.issn 1064-3745
dc.identifier.issn 1940-6029
dc.identifier.scopus 2-s2.0-105018397738
dc.identifier.uri https://doi.org/10.1007/978-1-0716-4949-7_9
dc.identifier.uri https://hdl.handle.net/20.500.12469/7601
dc.language.iso en en_US
dc.publisher Humana Press Inc. en_US
dc.relation.ispartof Methods in Molecular Biology en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Artificial Intelligence en_US
dc.subject Docking en_US
dc.subject Machine Learning en_US
dc.subject Molegro Virtual Docker en_US
dc.subject Sandres 2.0 en_US
dc.subject Scoring Function Space en_US
dc.title Hands-On Docking With Molegro Virtual Docker en_US
dc.type Book Part en_US
dspace.entity.type Publication
gdc.author.scopusid 58396726400
gdc.author.scopusid 60136674400
gdc.author.scopusid 57210643495
gdc.author.scopusid 7006435557
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp [Dere] Damla, Department of Molecular Biology and Genetics, Kadir Has Üniversitesi, Istanbul, Turkey; [Pehlivan] Sema Nur, Department of Bioengineering, Marmara Üniversitesi, Istanbul, Turkey; [da Silva] Amauri Duarte, Graduate Program in Information Technologies and Health Management, Universidade Federal de Ciencias da Saúde de Porto Alegre, Porto Alegre, Brazil; [de Azevedo Junior] Walter Filgueira, Department of Physics, Universidade Federal de Alfenas, Alfenas, Brazil en_US
gdc.description.endpage 138 en_US
gdc.description.publicationcategory Kitap Bölümü - Uluslararası en_US
gdc.description.scopusquality Q4
gdc.description.startpage 125 en_US
gdc.description.volume 2984 en_US
gdc.description.wosquality N/A
gdc.identifier.pmid 41075089

Files