Optimizing Real-Time Decision-Making in Sensor Networks

dc.contributor.author Yiǧitbaşi,Y.
dc.contributor.author Stroppa,F.
dc.contributor.author Badia,L.
dc.contributor.other Computer Engineering
dc.contributor.other 05. Faculty of Engineering and Natural Sciences
dc.contributor.other 01. Kadir Has University
dc.date.accessioned 2024-06-23T21:38:36Z
dc.date.available 2024-06-23T21:38:36Z
dc.date.issued 2023
dc.description Alnoor University College; University of Anbar; University Technology of Iraq; Wasit University en_US
dc.description.abstract The rapid integration of digital technologies into physical systems has given rise to cyber-physical systems, where the interaction between the computational and physical components plays a crucial role. This study explores optimal decision-making in event detection and transmission scheduling within cyber-physical systems, emphasizing the crucial aspect of efficient decision-making. We consider the problem of monitoring and reporting about a single event taking place within a finite time window achieving a reward related to the timeliness of the status update. Thus, the objective corresponds to minimizing the age of information between the instant of the event x and the status update time t, with a further penalty for a missed event. The monitoring apparatus decides when to perform the status update without knowing the value of x, but only knowing its statistical distribution. We assume a triangular probability density function for the instant of the event taking place, with a variable average. We provide an analytical derivation of the optimal choice of the status update, highlighting interesting trends, such as the saturation in the value of t as x grows close to the limit of the observation window. This proposed problem and its analytical formalization may serve as a further foundation for the general analysis of optimal monitoring of cyber-physical systems. © 2023 IEEE. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1109/DeSE60595.2023.10469190
dc.identifier.isbn 979-835038134-4
dc.identifier.issn 2161-1343
dc.identifier.scopus 2-s2.0-85189341041
dc.identifier.uri https://doi.org/10.1109/DeSE60595.2023.10469190
dc.identifier.uri https://hdl.handle.net/20.500.12469/5815
dc.language.iso en en_US
dc.publisher Institute of Electrical and Electronics Engineers Inc. en_US
dc.relation.ispartof Proceedings - International Conference on Developments in eSystems Engineering, DeSE -- 16th International Conference on Developments in eSystems Engineering, DeSE 2023 -- 18 December 2023 through 20 December 2023 -- Istanbul -- 198346 en_US
dc.rights info:eu-repo/semantics/closedAccess en_US
dc.subject Age of Information en_US
dc.subject Internet of Things en_US
dc.subject Optimal Transmission Scheduling en_US
dc.subject Sensor Networks en_US
dc.title Optimizing Real-Time Decision-Making in Sensor Networks en_US
dc.type Conference Object en_US
dspace.entity.type Publication
gdc.author.institutional Stroppa, Fabıo
gdc.author.scopusid 58967436200
gdc.author.scopusid 54891556200
gdc.author.scopusid 7004191275
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Kadir Has University en_US
gdc.description.departmenttemp Yiǧitbaşi Y., Kadir Has University, Dept. of Computer Engineering, Istanbul, Turkey; Stroppa F., Kadir Has University, Dept. of Computer Engineering, Istanbul, Turkey; Badia L., University of Padova, Dept. of Information Engineering (DEI), Italy en_US
gdc.description.endpage 211 en_US
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı en_US
gdc.description.startpage 206 en_US
gdc.identifier.openalex W4393036232
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6440992E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Age of Information; Internet of Things; Optimal Transmission Scheduling; Sensor Networks
gdc.oaire.popularity 3.473801E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.596
gdc.openalex.normalizedpercentile 0.48
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.scopuscites 2
gdc.scopus.citedcount 2
relation.isAuthorOfPublication f8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isAuthorOfPublication.latestForDiscovery f8babe23-f015-4905-a50a-4e9567f9ee8d
relation.isOrgUnitOfPublication fd8e65fe-c3b3-4435-9682-6cccb638779c
relation.isOrgUnitOfPublication 2457b9b3-3a3f-4c17-8674-7f874f030d96
relation.isOrgUnitOfPublication b20623fc-1264-4244-9847-a4729ca7508c
relation.isOrgUnitOfPublication.latestForDiscovery fd8e65fe-c3b3-4435-9682-6cccb638779c

Files