Seeing the Black Lives Matter Movement Through Computer Vision? an Automated Visual Analysis of News Media Images on Facebook

dc.authorid Bas, Ozen/0000-0002-8895-9704
dc.authorwosid Bas, Ozen/AAM-8969-2020
dc.contributor.author Kim, Minchul
dc.contributor.author Baş, Özen
dc.contributor.author Bas, Ozen
dc.contributor.other New Media
dc.date.accessioned 2023-10-19T15:12:32Z
dc.date.available 2023-10-19T15:12:32Z
dc.date.issued 2023
dc.department-temp [Kim, Minchul] Chung Ang Univ, Seoul, South Korea; [Bas, Ozen] Kadir Has Univ, Istanbul, Turkiye; [Kim, Minchul] Chung Ang Univ, Sch Media & Commun, 84 Heukseok Ro, Seoul 06974, South Korea en_US
dc.description.abstract In this study, automated visual analysis was used to explore how the political leanings of news media are associated with their visual representation of the Black Lives Matter (BLM) movement. We analyzed more than 9,000 images posted on Facebook pages run by U.S. news media between August 2014 and October 2020 using commercially developed computer vision tools and a topic modeling algorithm. The results show that images used in BLM-related news coverage can be categorized into 10 distinctively themed groups that overlap with the main types of protest images uncovered by manual content analysis. Furthermore, news sources engaged in different visual representation practices depending on their partisan leanings. The patterns uncovered in this study imply that (de)legitimization of protests may take either active or passive forms. These findings contribute to theorization of the way news media might use social media platforms to (de)legitimize social protests, which may influence public opinion on social issues. en_US
dc.identifier.citationcount 0
dc.identifier.doi 10.1177/20563051231195582 en_US
dc.identifier.issn 2056-3051
dc.identifier.issue 3 en_US
dc.identifier.scopus 2-s2.0-85169703847 en_US
dc.identifier.scopusquality Q1
dc.identifier.uri https://doi.org/10.1177/20563051231195582
dc.identifier.uri https://hdl.handle.net/20.500.12469/5470
dc.identifier.volume 9 en_US
dc.identifier.wos WOS:001057772700001 en_US
dc.identifier.wosquality Q1
dc.khas 20231019-WoS en_US
dc.language.iso en en_US
dc.publisher Sage Publications Ltd en_US
dc.relation.ispartof Social Media + Society en_US
dc.relation.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı en_US
dc.rights info:eu-repo/semantics/openAccess en_US
dc.scopus.citedbyCount 0
dc.subject Protests En_Us
dc.subject Coverage En_Us
dc.subject Exposure En_Us
dc.subject Picture En_Us
dc.subject Protests
dc.subject social protests en_US
dc.subject Coverage
dc.subject Black Lives Matter movement en_US
dc.subject Exposure
dc.subject automated visual content analysis en_US
dc.subject Picture
dc.subject topic modeling en_US
dc.title Seeing the Black Lives Matter Movement Through Computer Vision? an Automated Visual Analysis of News Media Images on Facebook en_US
dc.type Article en_US
dc.wos.citedbyCount 0
dspace.entity.type Publication
relation.isAuthorOfPublication 15e3a2b6-6829-46dc-a321-8704c9943e07
relation.isAuthorOfPublication.latestForDiscovery 15e3a2b6-6829-46dc-a321-8704c9943e07
relation.isOrgUnitOfPublication b5858033-f7be-4c13-85ee-abb8e71cacd9
relation.isOrgUnitOfPublication.latestForDiscovery b5858033-f7be-4c13-85ee-abb8e71cacd9

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
5470.pdf
Size:
1.78 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text