Reviewing the Effects of Spatial Features on Price Prediction for Real Estate Market: Istanbul Case
| dc.contributor.author | Ecevit, M.I. | |
| dc.contributor.author | Erdem, Z. | |
| dc.contributor.author | Dag, H. | |
| dc.contributor.other | Management Information Systems | |
| dc.contributor.other | 03. Faculty of Economics, Administrative and Social Sciences | |
| dc.contributor.other | 01. Kadir Has University | |
| dc.date.accessioned | 2023-10-19T15:05:37Z | |
| dc.date.available | 2023-10-19T15:05:37Z | |
| dc.date.issued | 2022 | |
| dc.description | 7th International Conference on Computer Science and Engineering, UBMK 2022 --14 September 2022 through 16 September 2022 -- --183844 | en_US |
| dc.description.abstract | In the real estate market, spatial features play a crucial role in determining property appraisals and prices. When spatial features are considered, classification techniques have been rarely studied compared to regression, which is commonly used for price prediction. This study reviews spatial features' effects on predicting the house price ranges for real estate in Istanbul, Turkey, in the classification context. Spatial features are generated and extracted by geocoding the address information from the original data set. This geocoding and feature extraction is another challenge in this research. The experiments compare the performance of Decision Trees (DT), Random Forests (RF), and Logistic Regression (LR) classifier models on the data set with and without spatial features. The prediction models are evaluated based on classification metrics such as accuracy, precision, recall, and F1-Score. We additionally examine the ROC curve of each classifier. The test results show that the RF model outperforms the DT and LR models. It is observed that spatial features, when incorporated with non-spatial features, significantly improve the prediction performance of the models for the house price ranges. It is considered that the results can contribute to making decisions more accurately for the appraisal in the real estate industry. © 2022 IEEE. | en_US |
| dc.identifier.citationcount | 0 | |
| dc.identifier.doi | 10.1109/UBMK55850.2022.9919540 | en_US |
| dc.identifier.isbn | 9781665470100 | |
| dc.identifier.scopus | 2-s2.0-85141867569 | en_US |
| dc.identifier.uri | https://doi.org/10.1109/UBMK55850.2022.9919540 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.12469/4973 | |
| dc.khas | 20231019-Scopus | en_US |
| dc.language.iso | en | en_US |
| dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
| dc.relation.ispartof | Proceedings - 7th International Conference on Computer Science and Engineering, UBMK 2022 | en_US |
| dc.rights | info:eu-repo/semantics/closedAccess | en_US |
| dc.subject | Apache-spark | en_US |
| dc.subject | decision tree | en_US |
| dc.subject | geocoding | en_US |
| dc.subject | logistic regression | en_US |
| dc.subject | random forest | en_US |
| dc.subject | real estate | en_US |
| dc.subject | spatial feature | en_US |
| dc.subject | Classification (of information) | en_US |
| dc.subject | Commerce | en_US |
| dc.subject | Forecasting | en_US |
| dc.subject | Logistic regression | en_US |
| dc.subject | Random forests | en_US |
| dc.subject | Apache-spark | en_US |
| dc.subject | Geo coding | en_US |
| dc.subject | House's prices | en_US |
| dc.subject | Istanbul | en_US |
| dc.subject | Logistics regressions | en_US |
| dc.subject | Price prediction | en_US |
| dc.subject | Random forests | en_US |
| dc.subject | Real estate market | en_US |
| dc.subject | Real-estates | en_US |
| dc.subject | Spatial features | en_US |
| dc.subject | Decision trees | en_US |
| dc.title | Reviewing the Effects of Spatial Features on Price Prediction for Real Estate Market: Istanbul Case | en_US |
| dc.type | Conference Object | en_US |
| dspace.entity.type | Publication | |
| gdc.author.institutional | Ecevit, Mert İlhan | |
| gdc.author.scopusid | 57964038500 | |
| gdc.author.scopusid | 57963678400 | |
| gdc.author.scopusid | 6507328166 | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.departmenttemp | Ecevit, M.I., Information Technologies Fmv Işk University, İstanbul, Turkey, Management Information Systems Kadir Has University, İstanbul, Turkey; Erdem, Z., Management Information Systems Kadir Has University, İstanbul, Turkey; Dag, H., Management Information Systems Kadir Has University, İstanbul, Turkey | en_US |
| gdc.description.endpage | 495 | en_US |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
| gdc.description.startpage | 490 | en_US |
| gdc.identifier.openalex | W4308095723 | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 1.0 | |
| gdc.oaire.influence | 2.6590659E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.keywords | Spatial features | |
| gdc.oaire.keywords | spatial feature | |
| gdc.oaire.keywords | real estate | |
| gdc.oaire.keywords | Decision trees | |
| gdc.oaire.keywords | Logistic regression | |
| gdc.oaire.keywords | Price prediction | |
| gdc.oaire.keywords | Real estate | |
| gdc.oaire.keywords | decision tree | |
| gdc.oaire.keywords | Decision tree | |
| gdc.oaire.keywords | Spatial feature | |
| gdc.oaire.keywords | Istanbul | |
| gdc.oaire.keywords | House's prices | |
| gdc.oaire.keywords | Real estate market | |
| gdc.oaire.keywords | Geocoding | |
| gdc.oaire.keywords | Classification (of information) | |
| gdc.oaire.keywords | logistic regression | |
| gdc.oaire.keywords | Commerce | |
| gdc.oaire.keywords | Random forests | |
| gdc.oaire.keywords | Logistics regressions | |
| gdc.oaire.keywords | Apache-spark | |
| gdc.oaire.keywords | geocoding | |
| gdc.oaire.keywords | Geo coding | |
| gdc.oaire.keywords | random forest | |
| gdc.oaire.keywords | Random forest | |
| gdc.oaire.keywords | Forecasting | |
| gdc.oaire.keywords | Real-estates | |
| gdc.oaire.popularity | 3.13541E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0211 other engineering and technologies | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.oaire.sciencefields | 0502 economics and business | |
| gdc.oaire.sciencefields | 05 social sciences | |
| gdc.openalex.fwci | 0.637 | |
| gdc.openalex.normalizedpercentile | 0.59 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.scopus.citedcount | 1 | |
| relation.isAuthorOfPublication | 32d2136a-cb55-4ba5-9e30-1767c6f3b090 | |
| relation.isAuthorOfPublication.latestForDiscovery | 32d2136a-cb55-4ba5-9e30-1767c6f3b090 | |
| relation.isOrgUnitOfPublication | ff62e329-217b-4857-88f0-1dae00646b8c | |
| relation.isOrgUnitOfPublication | acb86067-a99a-4664-b6e9-16ad10183800 | |
| relation.isOrgUnitOfPublication | b20623fc-1264-4244-9847-a4729ca7508c | |
| relation.isOrgUnitOfPublication.latestForDiscovery | ff62e329-217b-4857-88f0-1dae00646b8c |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 4973.pdf
- Size:
- 718.19 KB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text